
Internet Appendix for
“Why Did the q Theory of Investment Start Working?”

Appendix B. Additional results
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Fig. B.12.
First-differences of aggregate investment rate and lagged Tobin’s q from annual Compustat data, 1975–2015.

The solid blue series represents the aggregate investment rate, defined as total annual capital expenditures in Compustat
scaled by the previous year’s total capital stock in Compustat. The dashed red series represents a one-year lag of aggregate
Tobin’s q, defined as the total market value of equity, plus book value of debt, minus current assets, divided by the total capital
stock in Compustat. In both cases, the capital stock is measured as the aggregate gross stock of property, plant, and equipment.
Both series are plotted in differences. As in Figure 2, the 1995-2015 subsample of Figure B.12 exhibits both greater volatility of
Tobin’s q, and a better fit of the aggregate investment-q relationship, than the 1975-1995 subsample. The volatility of Tobin’s
q rises from about 9% to about 31%, and the R2 of the aggregate regression rises from 0.1% to 53%.
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Fig. B.13.
R2 of the panel regression across four bins of within-firm volatility of Tobin’s q.

The bins are recalculated separately for the two subperiods 1975–1995 and 1995–2015.
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(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It/Kt-1 It/Kt-1

L.q 0.0749∗∗∗ 0.0608∗∗∗ 0.0352∗∗∗ 0.00425∗∗∗

(0.00447) (0.00248) (0.00183) (0.000813)
Sample Bin 1 Bin 2 Bin 3 Bin 4
Firm FE? Yes Yes Yes Yes
Obs. 33252 34418 34380 33733
R2 0.0306 0.0680 0.0711 0.101

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.5.
As with Table 2, but not winsorized.

This table performs panel regressions of investment on lagged Tobin’s q, using annual data from Compustat. Firms are sorted
into bins based on the within-firm volatility of Tobin’s q, with Bin 4 as the highest volatility. Standard errors are clustered by
firm, and the table reports the within-firm R2 of the regression.

(1) (2) (3) (4)
Itot;t/Ktot;t-1 Itot;t/Ktot;t-1 Itot;t/Ktot;t-1 Itot;t/Ktot;t-1

qtot,t-1 0.0670∗∗∗ 0.0692∗∗∗ 0.0683∗∗∗ 0.0463∗∗∗

(0.00459) (0.00297) (0.00192) (0.000879)
Sample Bin 1 Bin 2 Bin 3 Bin 4
Firm FE? Yes Yes Yes Yes
Obs. 32982 34508 34424 33823
R2 0.0216 0.0666 0.149 0.313

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.6.
As with Table 2, but using the total investment and q measures of Peters and Taylor (2017).

This table performs panel regressions of total investment on lagged total q, using annual data from Compustat. Firms are
sorted into bins based on the within-firm volatility of total q, with Bin 4 as the highest volatility. Total investment and total q
are winsorized at the 1st and 99th percentiles. Standard errors are clustered by firm, and the table reports the within-firm R2

of the regression.
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(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It/Kt-1 It/Kt-1

qt-1 0.00789∗∗∗ 0.00378∗∗∗ 0.0204∗∗∗ 0.0233∗∗∗

(0.00252) (0.000846) (0.00234) (0.00222)
Sample Non-high-tech High-tech Non-high-tech, High-tech,

pre-1995 pre-1995
Firm FE? Yes Yes Yes Yes
Obs. 103959 31824 41215 8099
R2 0.0407 0.124 0.0373 0.150

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.7.
As with Table 3, but not winsorized.

This table performs panel regressions of investment on lagged Tobin’s q, using annual data from Compustat. “High-tech”
refers to SIC codes 283, 357, 366, 367, 382, 384, and 737, following Brown et al. (2009). The data are annual Compustat from
1975-2015. Columns 3 and 4 restrict to pre-1995 firm-years. Standard errors are clustered by firm, and the table reports the
within-firm R2 of the regression.

(1) (2) (3) (4)
Itot;t/Ktot;t-1 Itot;t/Ktot;t-1 Itot;t/Ktot;t-1 Itot;t/Ktot;t-1

L.q tot 0.0529∗∗∗ 0.0452∗∗∗ 0.0528∗∗∗ 0.0586∗∗∗

(0.00120) (0.00106) (0.00239) (0.00325)
Sample Non-high-tech High-tech Non-high-tech, High-tech,

pre-1995 pre-1995
Firm FE? Yes Yes Yes Yes
Obs. 103946 31824 41209 8099
R2 0.165 0.294 0.0898 0.239

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.8.
As with Table 3, but using the total investment and q measures of Peters and Taylor (2017).

This table performs panel regressions of total investment on lagged total q, using annual data from Compustat. “High-tech”
refers to SIC codes 283, 357, 366, 367, 382, 384, and 737, following Brown et al. (2009). The data are annual Compustat from
1975-2015. Columns 3 and 4 restrict to pre-1995 firm-years. Total investment and total q are winsorized at the 1st and 99th
percentiles. Standard errors are clustered by firm, and the table reports the within-firm R2 of the regression.
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Fig. B.14. Industry-level investment-q correlations and R&D intensity.
As in Figure 8, but R2 values are transformed via the function ln(R2)− ln(1−R2).

β = -0.090; p = 0.09
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Fig. B.15. R2 of investment-q regressions and cash-flow-q regressions by industry.
As in Figure 10 in the main paper, but R2 values are transformed via the function ln(R2)− ln(1−R2).
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Fig. B.16. Examines trends in the ρ2 and τ2 statistics of Erickson et al. (2014), using ten year windows of data and three
cumulants to identify the system. (This reproduces Figure 11 in the paper.)
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Fig. B.17. Ten year windows, five cumulants.

.4
.6

.8
1

1985 1990 1995 2000 2005 2010 2015
End year of 10-year rolling window

τ2, standard q τ2, total q

.1
.2

.3
.4

1985 1990 1995 2000 2005 2010 2015
End year of 10-year rolling window

ρ2, standard q ρ2, total q

Fig. B.18. Ten year windows, seven cumulants.
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Fig. B.19. Twenty year windows, three cumulants.
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Fig. B.20. Twenty year windows, five cumulants.
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Fig. B.21. Twenty year windows, seven cumulants.
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Fig. B.22. Repeats the analysis of Figure 1 in the paper, but the blue series is adjusted to exclude the stock of intellectual
property products from the denominator, and to exclude spending on intellectual property products from the numerator. In
the left half of the figure, the R2 of the regression rises to 37% compared to the 6.5% in Figure 1. However, the estimated slope
in the left half of the figure is negative (β = −0.02), while in the right half of the figure it is positive (β = 0.03).

R2 = 0.35% R2 = 45.72%
σq = 13.30% σq = 28.22% -1
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Fig. B.23. Repeats the analysis of Figure 2 in the paper, but the blue series is adjusted to exclude the stock of intellectual
property products from the denominator, and to exclude spending on intellectual property products from the numerator.
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Appendix C. Endogenous decision to invest in innovation and learning

This Appendix provides numerical results for Section 3.5 in the paper. The left panel in Figure C.24 plots
the second derivative qΦJ as a function of Φ, approximated using finite difference (this second derivative has
the same sign as ṼΦJ). Each line in the plot corresponds to a different value of J ∈ {0.01, 0.025, 0.05}. The
right panel plots the second derivative qΦσµ

as a function of Φ, approximated using finite difference. Each
line in the plot corresponds to a different value of σµ ∈ {0.02, 0.08, 0.14}. In these plots, the state variables
are fixed at θt = µ̂t = µ̄ and νt = 0 (the results remain the same with different values for the state variables).
In both cases, the second derivative is positive at all times, consistent with the optimal purchase of research
Φ∗ increasing in J and in σµ.
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Fig. C.24. The left panel plots qΦJ as a function of Φ in the model with innovation jumps. The right panel plots qΦσµ as
a function of Φ in the model with learning. These second derivatives are computed using the finite difference method. Each
line in the left panel corresponds to a different value of J ∈ {0.01, 0.025, 0.05}. Each line in the right panel corresponds to a
different value of σµ ∈ {0.02, 0.08, 0.14}. The state variables are fixed at θt = µ̂t = µ̄ and νt = 0. The rest of the calibration is
given in Section 3.2 for the innovation model and in Section 3.3 for the learning model.

Appendix C.1. Two possible explanations for the falling investment-q regression slope among more R&D-
intensive firms

This appendix discusses the decreasing slope across bins in Table 2 and Figure 4. Perhaps the simplest
explanation for this effect is that R&D-intensive firms have more stringent adjustment costs. Panel A of
Figure C.25 illustrates this effect. It depicts the relationship between investment and average q for two
simulated samples in the model with learning (results are qualitatively similar in the model with innovation
jumps). The blue triangles are simulated from a model without learning and with the adjustment cost
parameter fixed at a = 16 (as in the baseline calibration). The red crosses are simulated from a model
with learning (Φ = 20) but with a higher adjustment cost parameter of a = 25. Each of the two models is
simulated at yearly frequency for 100 years, and all variables are demeaned. Increasing the adjustment cost
parameter lowers the slope of the regression (which equals 1/a in both cases). At the same time, learning
improves the investment-q relation (the average R2 over 5,000 simulations is 18% for the low adjustment
cost case and 47% for the high adjustment cost case).

Another explanation for the same pattern is that successful R&D yields market power. We extend the
setting of Section 3 to allow for market power, which we represent through decreasing returns to scale in the
profit function (Cooper and Ejarque, 2003). Suppose the profit function is as follows:

Π(Kt, θt) = θtK
α
t . (C.1)

If α < 1, the Hayashi (1982) conditions are violated and marginal q no longer equals average q, so that the
use of average q in the investment-q regression induces measurement error.

The firm’s objective function leads to a linear relationship between investment and marginal q,

I

K
= −1

a
+

1

a
VK(K,x) +

1

a
ν, (C.2)
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Model Market power Calibration
(1) (2) (3)

Avg(R2) Avg(slope) Avg(σq)
Panel A: Model with innovation jumps
(a) No innovation jumps No (α = 1) J = 0, Φ = 0 0.104 0.063 0.136
(b) Innovation jumps Yes (α = 0.90) J = 0.05, Φ = 20 0.150 0.046 0.172
Panel B: Model with learning
(i) No learning No (α = 1) σµ = 0, Φ = 0 0.179 0.063 0.184
(ii) Learning Yes (α = 0.90) σµ = 0.15, Φ = 20 0.402 0.038 0.614

Table C.9.
Simulations with varying degrees of market power.

Panel A reports simulation results for the model with innovations. Row (1) considers a model without innovation and without
market power (J = 0, α = 1). In row (2), we increase the size of the innovations jumps J and firm’s spending in research Φ, and
decrease the returns to scale parameter α. Panel B reports simulation results for the model with learning. Row (i) considers a
model without learning and with constant returns to scale. Row (ii) considers a model with learning and decreasing returns to
scale. All other parameters are as in the baseline calibration (see Sections 3.2 and 3.3). Each simulation contains 100 yearly
data points. The average R2 coefficient and the average slope coefficient from 5,000 regressions of I/K on average q (V/K) are
reported in columns (1) and (2). Column (3) reports the mean volatility of average q over the 5,000 simulations.

where VK(K,x) denotes marginal q, i.e., the shadow cost of capital, where x = {θ, ν} in the innovation
model, and x = {θ, µ̂, ν} in the learning model.

With the innovation jumps of Section 3.2, we compare two specifications:

(a) A model without innovation jumps and with constant returns to scale (α = 1). This is a special case
of the model analyzed in Section 3.2, in which marginal q equals average q.

(b) A model with innovation jumps and decreasing returns to scale (α = 0.9). In this specification, J = 0.05
and the firm’s research spending is Φ = 20.

With learning from Section 3.3, we compare two specifications:

(i) A model without learning and with constant returns to scale (α = 1). This is a special case of the
model analyzed in Section 3.3, in which marginal q equals average q.

(ii) A model with learning and decreasing returns to scale (α = 0.9). In this specification, σµ = 0.15 and
the firm learns from cash-flow realizations and from the additional signal st, with Φ = 20.

For all the above specifications, the calibration is otherwise the same as in Section 3. The values chosen
for the parameter α are in line with calibrations used in the literature (e.g., Gomes, 2001). Each of the four
models above is simulated 5,000 times at yearly frequency for 100 years. For each simulation, we run the
investment-q regression using average q (which equals V/K) as a proxy for marginal q. Table C.9 presents
the R2 coefficient, the slope of the regression, and the volatility of average q, where all reported statistics
are averaged over the 5,000 simulations.

Column (1) shows that the R2 coefficient increases with Φ, which is our main result: firms that invest
more in innovation and learning exhibit higher R2 coefficients for the investment-q regression. Column (2)
shows that the slope of the investment-q regression decreases with market power, both in the model with
innovation jumps and in the model with learning. It might seem that this decreasing slope should also lead
to a decrease in R2, but the offsetting impact of research leads to a net increase in R2. The reason for the
increase in R2 is the increase in the volatility of average q, as shown in column (3).

Panels B and C of Figure C.25 depict the relationship between investment and average q, where the blue
triangles are generated from simulating models (a) and (i) in Table C.9 (i.e., without innovation or learning,
and with constant returns to scale), and the red crosses are generated from simulating models (b) and (ii)
in Table C.9 (i.e., with innovation or learning, and decreasing returns to scale). Both panels reproduce
qualitatively the pattern of Figure 4, where the R2 coefficients increase as the slope coefficients decrease.
Indeed, while decreasing returns to scale dampen the slope coefficients, innovation and learning induce a
higher volatility of average q, which ultimately leads to a higher R2. In our simulations, Tobin’s q is on
average higher with decreasing returns to scale, in line with the intuition from Lindenberg and Ross (1981)
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Fig. C.25. Two possible explanations for the pattern in Figure 4 (decreasing slopes along with increasing R2 coefficients).
In panel (A), firms that learn more, and hence have a more volatile q, also have a higher adjustment cost parameter a. In

panels (B) and (C), firms that innovate more or learn more also gain market power. In the three panels, the triangles correspond
to a model without innovation and without learning. In panels (A) and (C), the crosses correspond to a model with learning
and Φ = 20. In panel (B) the crosses correspond to a model with innovation and J = 0.05,Φ = 20. The lines depict the fitted
relationships between investment and q. The simulations are performed over 100 years at an annual frequency.

that q should persist above one for firms with monopoly rents. This is not apparent from the figure, because
the variables are demeaned, but it is worth mentioning.

Our findings in this section echo a result in Abel and Eberly (1994). In their Lemma 2, they show
that marginal q and average q can be proportional even in the presence of decreasing returns to scale. The
investment-q regression can therefore exhibit a low slope without necessarily leading to a poor fit of the
regression. The slope and R2 are indeed two different diagnostics for different features of the q theory of
investment.1
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