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Abstract

We show that the relationship between aggregate investment and Tobin’s q has become remarkably tight in

recent years, contrasting with earlier times. We connect this change with the growing empirical dispersion

in Tobin’s q, which we document both in the cross-section and the time-series. To study the source of this

dispersion, we augment a standard investment model with two distinct mechanisms related to firms’ research

activities: innovations and learning. Both innovation jumps in cash flows and the frequent updating of beliefs

about future cash flows endogenously amplify volatility in the firm’s value function. Perhaps counterintu-

itively, the investment-q regression works better for research-intensive industries, a growing segment of the

economy, despite their greater stock of intangible assets. We confirm the model’s predictions in the data,

and we disentangle the results from measurement error in q.

Keywords: Investment, Tobin’s q, research and development

JEL classification: E2, G3, O3

Acknowledgments

We thank Andrew Abel for helpful comments on an early version of this paper, as well as Tor-Erik

Bakke, Frederico Belo, Michael Brennan, John Cochrane, Philippe Jorion, Hanno Lustig, Evgeny Lyan-

dres, Randall Morck, Guangqian Pan, and presentation participants at the 2018 Asian Finance Association

Meetings, 2018 European Summer Symposium in Financial Markets, 2018 Frontiers in Finance Conference,

2018 IDC Conference in Financial Economics Research, 2018 Junior Finance Conference at the University

of Wisconsin-Madison, 2018 LA Finance Day, 2018 London Business School Summer Symposium, 2018

Midwest Finance Association Annual Meeting, 2018 Northern Finance Association Annual Meeting, 2018

University of Kentucky Finance Conference, 2018 Workshop on Asset Pricing in Zurich, Boston University,

Dartmouth College, Emory University, McGill University, UCLA, UNC, University of Colorado Boulder,

University of Maryland, University of Washington, Vanderbilt University, and Washington University St.

Louis. A previous version of this paper circulated under the title “Learning and the improving relationship

between investment and q.”

Preprint submitted to Elsevier October 5, 2018



1. Introduction

The q theory of investment predicts a strong relationship between corporations’ market values and their

investment rates. Hayashi (1982) provides justification for measuring marginal q with a valuation ratio,

average q (also known as Tobin’s q), so that a simple regression of investment on Tobin’s q should have a

strong fit. Researchers have found that this regression in fact performs quite poorly. While the Hayashi model

assumptions may not hold exactly in the data, the stark disconnect between investments and valuations has

piqued the interest of financial economists. A large literature investigates the potential reasons why Tobin’s

q does not explain investment well in the data, pointing to the existence of financial constraints, decreasing

returns to scale, inefficient equity-market valuations, and measurement problems, among other things.1

Curiously, even as this literature has continued to grow, the stylized fact has changed. Using data from

the BEA’s NIPA tables and the Fed’s Flow of Funds, we document that the aggregate investment-q regression

has worked remarkably well in recent years. The simple regression achieves an R2 of 70% during 1995–2015,

comparable to the empirical performances of the bond price q regression proposed in Philippon (2009) and

the total tangible and intangible investment-q regression in Peters and Taylor (2017).2 If one were to test

the simple theory using data from recent years, one would conclude that the q theory of investment is in fact

an empirical success.

Yet this recent development only deepens the puzzle, as problems with q theory highlighted by the

literature seem to have worsened in recent years. For example, Peters and Taylor (2017) focus on the failure

to measure intangible assets, which have grown substantially in the aggregate, and Philippon (2009) focuses

on measuring q via bond markets to avoid relying on equity market valuations, which are increasingly volatile

and may seem unreliable. We show that, counterintuitively, it is precisely the growing volatility in valuations,

especially in intangible-intensive industries, that has contributed to the revived empirical performance of the

classic regression.

Before presenting the model, we establish several stylized facts. First, the volatility of aggregate q in

the data is higher precisely during the years when the aggregate investment-q regression performs better.

Second, the within-firm variation of Tobin’s q in Compustat has risen steeply since the late 1990s. Finally,

the panel version of the investment-q regression also fits much better when Tobin’s q is more volatile. These

stylized facts support our intuition: the empirical performance of the theory hinges critically on the amount

1For examples, see Fazzari et al. (1988), Gilchrist and Himmelberg (1995), Kaplan and Zingales (1997), Erickson and Whited
(2000), Gomes (2001), Cooper and Ejarque (2003), Moyen (2004), Philippon (2009), Abel and Eberly (2011), and Peters and
Taylor (2017).

2This regression uses the BEA’s current definition of fixed assets, which was restated retroactively in 2013 to include
intellectual property products. In the online Internet Appendix, we show that even without this restatement the R2 remains
at 65%. See further discussion in Section 2.
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of endogenous variation that one finds in Tobin’s q.

To explain these recent developments, we propose two mechanisms related to firms’ research activities. In

our first mechanism, we recognize that, although firms invest in research to increase their future cash flows,

innovations may or may not materialize. The firm’s increased cash flow volatility from innovations directly

feeds into the volatility of Tobin’s q valuations, generating a better fit in the investment-q regression. In

the alternative mechanism, we focus on the learning taking place within research-intensive firms. Research

causes faster updating of beliefs about future cash flows, which endogenously produces more variation in q.

This learning-induced variation is informative about the firm’s investment policy. With either mechanism,

the main result is that the investment-q regression works better when there is more endogenous variation

in the regressor q. This provides a simple, yet previously unexplored explanation behind the poor fit of

the regression. The culprit is the historically low variation in Tobin’s q relative to residual factors affecting

investment.

Turning to the specific features of the model, we study a standard q-theoretic investment framework, most

closely resembling the setting of Abel (2017). In the innovation-based model, we augment the setting by

assuming that research expenses increase the probability of innovations. We represent innovations as jumps

in the stochastic process for the mean-reverting cash flows. In the learning-based model, we assume that

the long-term cash-flow mean evolves over time, and the firm can never fully learn. Research expenses allow

the firm to acquire, at a cost, informative signals about the time-varying cash-flow mean. These features

provide theoretical foundations for the stochastic variation in marginal q. We show that both innovations

and learning endogenously amplify the volatility of marginal q, thereby improving the fit of the investment-q

regression.

An empirical implication is that firms spending more in research and development (R&D) should feature

a tighter fit between investment and Tobin’s q. At first glance, this prediction seems counterintuitive because

research creates an intangible asset, and therefore a measurement error when accounting only for tangible

capital in Tobin’s q as discussed in Peters and Taylor (2017). Our model abstracts from this measurement

error, and our empirical findings point to a large offsetting effect.

In the cross-section of firms in Compustat, industries featuring greater investment in R&D, higher rates of

patenting, and greater intangibility have noticeably higher R2 values in their investment-q panel regressions

compared to those from the average industry. This stylized fact is documented in Peters and Taylor (2017)

and earmarked as a puzzle. Our model provides an explanation, by predicting that research-intensive firms

exhibit greater volatility in Tobin’s q. We confirm that the better fit in high-tech industries was present

even before the aggregate regression fit began to improve, so it is not driven simply by the fact that these

firms are more common later in the sample. Rather, as high-tech firms have become a larger segment of the
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economy, their greater endogenous volatility in Tobin’s q has caused the aggregate regression to improve.

The correlation between cash flows and Tobin’s q allows us to assess the relative importance of innovation

versus learning as mechanisms for our findings. With innovation jumps in the cash flow process, the cash

flow volatility imparted by the jumps transfers directly to Tobin’s q, as there is a tight connection between

cash flows and Tobin’s q. In contrast, the learning mechanism requires the firm and its investors to take

into account more signals than just observing cash flow realizations. More learning therefore decreases the

correlation between cash flows and Tobin’s q. While either mechanism increases the R2 of the investment-q

relationship, they have contrasting predictions for the correlation between cash flows and Tobin’s q. We find

a negative relationship between the R2 of the investment-q relationship and the R2 of the Tobin’s q-cash flow

relationship, consistent with the learning mechanism. While innovation jumps may also be an important

mechanism behind our findings, this evidence emphasizes the role of updating investment decisions and

valuations based on multiple signals.

In sum, we find that the classic q theory of investment works surprisingly well in recent years, and

counterintuitively it works best for firms with high volatilities in equity valuations, high levels of R&D

investment, and low levels of tangibility. Our findings have several general implications. They suggest that

models based on innovations and learning may be particularly well-suited to study corporate investment

behavior. They also suggest that Tobin’s q, “arguably the most common regressor in corporate finance”

(Erickson and Whited, 2012), may be a better empirical proxy for the firm’s investment opportunities than

previously thought.

An empirical paper closely related to ours is Peters and Taylor (2017). They adjust the investment-q

regression variables to include intangible capital. While we report results using the classic definitions of

investment and q in keeping with the previous literature, all results continue to hold when these quantities

are adjusted for intangibles with the “total” investment and q series.3

Another related empirical paper is Gutiérrez and Philippon (2016). They highlight that aggregate in-

vestment has trended downward while aggregate Tobin’s q has trended upward, a divergence they attribute

to weakened competition and governance in the US. Our analysis is mostly silent on the levels of investment

and q, and focuses instead on the correlations, which have improved in recent years. However, in the online

Internet Appendix, we investigate the effect of weakened competition. We extend our model to demonstrate

how greater market power can generate a lower Tobin’s q slope and yet a higher investment-q regression R2.

Lindenberg and Ross (1981) and Cooper and Ejarque (2003) also examine competition-related implications

on Tobin’s q.

3Results are available in Appendix B of the online Internet Appendix.
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Our paper builds on a long theoretical literature investigating the q theory of investment.4 The most

closely related theory paper to ours is Abel (2017). For the innovation-based mechanism, we borrow insights

from the endogenous growth literature, which analyzes the role of technological innovations in promoting eco-

nomic growth.5 Our paper is also related to the widely studied relationship between firms’ R&D innovations

and their growth since Griliches (1979).6

For the learning-based model, we simply assume that learning symmetrically and simultaneously occurs

for the firm and the market alike as in Alti (2003), Moyen and Platikanov (2012), and Hennessy and

Radnaev (2018). In contrast, many papers study settings in which managers are assumed to possess superior

information compared to outsiders (e.g. Myers and Majluf, 1984), or the reverse channel in which managers

extract information from their stock prices when making investment decisions.7 We choose the simple,

symmetric learning framework as it is powerful enough to provide the empirical prediction of interest, namely

that the fit of the investment-q regression improves when firms are more intensely engaged in research and

learning.

Finally, our paper complements the recent literature showing that financial markets have become more

informative in recent years. Bai et al. (2016) argue that the recent rise in price informativeness is due

to greater information production in financial markets. Chen et al. (2007) and Bakke and Whited (2010)

document a stronger relationship between stock prices and investment for firms with more informative stock

prices, whereas Dow et al. (2017) demonstrate how the information production in financial markets can

amplify business cycles. Durnev et al. (2004) show that greater firm-specific variation in stock returns is

associated with greater measures of investment efficiency. The theoretical models of Farboodi et al. (2017)

and Begenau et al. (2017) describe how this rise in price informativeness affects capital allocation in the

economy. In line with this growing body of evidence, we document a remarkable improvement in the

relationship between investment and q in recent years.

The rest of the paper is organized as follows: Section 2 establishes the motivating empirical facts related to

the empirical dispersion in Tobin’s q and the fit of the investment-q regression. Section 3 builds an investment

model with innovations and learning that endogenizes volatility in q and derives testable implications. Section

4 returns to the data and investigates the implications of the model. Section 5 concludes.

4Foundational contributions to Tobin’s q theory originate from Keynes (1936), Brainard and Tobin (1968), Tobin (1969),
Mussa (1977), Lindenberg and Ross (1981), Abel (1983), and Salinger (1984), among many others.

5For example, see the seminal papers of Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992).
6See the literature surveys of Mairesse and Sassenou (1991) and Hall et al. (2009), as well as the more recent contributions

of Aw et al. (2011), Bloom et al. (2013), and Doraszelski and Jaumandreu (2013).
7See Subrahmanyam and Titman (1999), Bresnahan et al. (1992), Dow and Gorton (1997), Goldstein and Guembel (2008),

and Edmans et al. (2015), among others.
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Fig. 1. Aggregate quarterly investment rate and lagged Tobin’s q.
The solid blue line plots private nonresidential fixed investment divided by the lagged stock of private nonresidential fixed

assets. The dashed red line plots the lagged value of Tobin’s q, calculated as the value of corporate equity and liabilities,
less inventories and financial assets, divided by the stock of corporate fixed assets. See Appendix A.1 for details about the
construction of the series, which follows Hall (2001).

2. Stylized empirical facts

2.1. Improved fit of the aggregate regression

We first document that the aggregate investment-q regression has performed much better in recent years.

To do so, in Figure 1 we plot and compare aggregate investment, and lagged aggregate Tobin’s q, from 1975

to 2015. To construct these series, we use quarterly data from the BEA’s NIPA tables and the Fed’s Flow

of Funds, following the steps described in Hall (2001). Details related to the construction of these series are

provided in Appendix A.1.

The investment-q regression is specified as

It+1

Kt
= α+ βqt + εt, (1)

where t indexes quarters, I is investment in fixed assets, K is the stock of fixed assets, and q is measured

as the ratio of corporate financial value less financial assets and inventories to the stock of corporate fixed

assets. The R2 from regression (1) has been the primary focus of the empirical literature assessing the

performance of the q theory of investment. In Figure 1 we plot the investment and Tobin’s q time series

behind this regression in order to assess its performance.

The figure is divided into two subperiods of 20 years each. At the bottom of each subperiod is the R2

value that would be obtained from the standard regression of aggregate investment rate on lagged q using

only the data from that subperiod. During the first subperiod, 1975-1995, the relationship between aggregate

investment and Tobin’s q is disappointingly weak, and the standard regression achieves an R2 of only 6.5%.
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Fig. 2. Year-over-year differences of aggregate quarterly investment rate and lagged Tobin’s q.
The series are constructed as in Figure 1.

This fact has been widely confirmed, e.g., Philippon (2009), Table III (top panel, second column). As a

result, modern empirical research often describes the investment-q regression as an empirical failure. Many

papers attempt to improve the classic regression in various ways, as discussed above. But in the second

subperiod, 1995-2015, the investment-q regression performs much better. From 1995-2015, the R2 is over

70%. Looking only at the more recent past, one would conclude that the simple regression implementation

of q theory is in fact a resounding success.8

Figure 2 performs a similar analysis in differences. The solid blue and dashed red series are the year-

over-year differences of the series from Figure 1. The R2 values from the regression within the two 20-year

subperiods are listed at the bottom of the figure, and they suggest the same conclusion as in Figure 1. The

R2 of the investment-q regression rose from less than 1% in 1975-1995 to roughly 50% in 1995-2015.

Also listed at the bottom of each subperiod in Figure 2 are the volatilities of the explanatory variable in

the regression, differenced Tobin’s q. These figures provide motivating evidence for our core mechanism. The

volatility of Tobin’s q is lower during the subperiod in which the investment-q regression performs worse,

and it is higher during the subperiod in which the regression performs better.9

Under the null hypothesis that the model is true, the investment-q regression should yield a higher R2

8Note that private nonresidential fixed assets were redefined in 2013 to include intellectual property products, which partially
reflects the Peters and Taylor (2017) concept of total investment that includes R&D expense (although they also include spending
on organizational capital measured through SG&A expense). Figures B.22 and B.23 the online Internet Appendix repeat the
analysis excluding the 2013 adjustment, and show that the conclusions of Figures 1 and 2 remain the same. Intuitively, this
category of spending has trended upward in recent years but is very stable (similar to corporate R&D), so that it has little
effect on the R2 of the aggregate regressions.

9Figure B.12 in the online Internet Appendix demonstrates patterns similar to Figure 2 using annual Compustat data, which
is the data source for the cross-sectional empirical analysis in this paper.
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when there is more dispersion in the key explanatory variable, Tobin’s q. Thus, based on our results, one

possible explanation for the improved fit of the aggregate regression is that the theory has always been

“true,” but that Tobin’s q has become more volatile relative to the model’s residuals. In the next section, we

use panel data from Compustat to examine more closely the empirical dispersion in Tobin’s q and establish

this pattern.

2.2. Increased dispersion in Tobin’s q

Shifting our focus from the aggregate series discussed above, we next reconstruct the series of investment

and valuation at the firm level. Using annual panel data on publicly-traded firms from Compustat, we

confirm and explore the growing empirical dispersion in Tobin’s q.

To construct the dataset for this analysis, we accessed the annual Compustat database on September 14,

2017. We retain observations from 1975 to 2015, and drop financial firms (SIC codes 6000–6999), utilities

(4900-4999), and public administration firms (9000–9999). We remove the in-process component of R&D by

adding in Compustat variable rdip. Following Peters and Taylor (2017), we drop any observations with less

than $5 million in gross property, plant, and equipment (PP&E), as well as any observations with negative

or missing total assets or sales.

We measure the market value of equity as prcc f × csho. We define the numerator of Tobin’s q as the

market value of equity plus book value of total debt minus current assets; and its denominator as gross

PP&E. Physical investment is capital expenditures divided by lagged gross PP&E. “Total” investment is

capital expenditures plus R&D and 30% of SG&A, divided by the lagged sum of gross PP&E and intangible

capital. The intangible capital series is downloaded from the online resources for Peters and Taylor (2017),

from which we also obtain the series of total q for some of our analysis. Cash flow is measured as income

before extraordinary items plus depreciation divided by gross PP&E.

Finally, we drop observations with missing values of investment, Tobin’s q, or cash flow, and we winsorize

cash flow, q (both standard and total), and investment (both physical and total) at the 1st and 99th

percentiles. Table 1 displays summary statistics for this sample.

In Figure 3, we investigate how Compustat firms have changed over time by examining the within-firm

volatility. To create this figure, we proceed in two steps. First, we calculate for each Compustat firm the

within-firm volatility of Tobin’s q during its entire lifetime in Compustat. This creates volatility measures of

valuation that are fixed at the firm level. Next, for each year, we average these fixed volatility numbers across

all firms that are present in Compustat that year. The series is thus driven by changes in the composition

of Compustat firms. Finally, the series is smoothed evenly over a five-year lag.

Figure 3 reveals that within-firm volatilities of Tobin’s q have greatly increased relative to their 1980
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Mean Median Std. dev.
Capital expenditures 176.67 10.54 1080.13
Property, plant, and equipment (gross) 1819.43 89.79 11310.32
Investment rate 0.18 0.11 0.21
Total investment rate 0.21 0.16 0.18
Tobin’s q 2.93 0.96 6.13
Total q 0.99 0.57 1.51
Volatility of Tobin’s q 2.26 0.94 3.24
Volatility of total q 0.76 0.46 0.79
Cash flow 0.09 0.13 0.55

Table 1.
This table displays summary statistics from the annual Compustat sample, 1975–2015. Investment rate is capital expenditures
divided by lagged gross property, plant, and equipment (PP&E). Total investment rate is capital expenditures plus research
and development expense plus 30% of selling, general, and administrative expense, scaled by lagged total capital (gross PP&E
plus intangible capital, where the latter is provided in Peters and Taylor, 2017). Tobin’s q is the market value of equity plus
book value of debt minus current assets, divided by gross PP&E. Total q is provided in Peters and Taylor, 2017. Volatilities of
Tobin’s q and total q are calculated within-firm. Cash flow is income before extraordinary items plus depreciation, divided by
gross PP&E. All ratios are winsorized at the 1st and 99th percentiles.
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Fig. 3. Within-firm dispersion in Tobin’s q, 1980-2015.
For each firm in Compustat, we calculate the within-firm volatility of Tobin’s q during that firm’s entire lifetime in Compustat.

We then average that firm-level measure across all firms in Compustat for each year, and drop any firms for which this average
is zero. The series is thus driven by changes in the composition of Compustat firms. Finally, the series is smoothed evenly over
a five-year lag.
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(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It/Kt-1 It/Kt-1

qt-1 0.0739∗∗∗ 0.0575∗∗∗ 0.0329∗∗∗ 0.0116∗∗∗

(0.00408) (0.00215) (0.00105) (0.000298)
Sample Bin 1 Bin 2 Bin 3 Bin 4
Firm FE? Yes Yes Yes Yes
Obs. 33190 34424 34386 33783
R2 0.0348 0.0832 0.121 0.199

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.
This table performs panel regressions of investment on lagged Tobin’s q, using annual data from Compustat.

Firms are sorted into bins based on the within-firm volatility of Tobin’s q, with Bin 4 as the highest volatility. Standard
errors are clustered by firm, and the table reports the within-firm R2 of the regression. Investment and Tobin’s q are winsorized
at the 1st and 99th percentiles.

values. Tobin’s q volatility has more than tripled. The increase in Tobin’s q volatility is especially noticeable

in the late 1990s and early 2000s. The series thus show that the composition of Compustat has shifted

towards firms with higher volatilities.

2.3. Better performance for firms with more volatile q

Motivated by the Compustat evidence above which shows that firms are exhibiting greater volatility of

q, we next demonstrate that the investment-q regression works better where this volatility is greater.

The first point to make is that the within-firm volatility of Tobin’s q varies by orders of magnitude across

firms. We sort Compustat firms into four bins of within-firm q volatility, and find that the average volatility

in the lowest bin is 0.24, while in the highest bin it is 6.6.10

The bin with the highest-volatility firms is where we find that the investment-q relationship is the tightest.

To show this, we estimate standard panel regressions of investment on lagged Tobin’s q:

Ii,t+1

Kit
= αi + βqit + εit, (2)

where i indexes firms, t indexes years, I is capital expenditures, K is gross property, plant, and equipment,

q is defined as V
K , where V is the market value of equity plus book value of debt minus current assets. All

of these definitions are taken from Peters and Taylor (2017).

Table 2 performs this regression separately across four bins, with Bin 1 as the lowest within-firm volatility

in Tobin’s q and Bin 4 as the highest. The table confirms that the regression fit improves when Tobin’s

q is more volatile: The R2 value, which in all cases is calculated after taking out the firm fixed effects, is

monotonically increasing across the bins of volatility in Tobin’s q.

10Related, Erickson and Whited (2000) observe that Tobin’s q is highly skewed in the data, which aids the identification of
their strategy based on higher-order moments.
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The scatter plot corresponds to Table 2. Each dot represents a firm-year observation, of which 500 are sampled from the

lowest and highest bins of within-firm volatility in Tobin’s q. The x-axis measures Tobin’s q, and the y-axis measures the
investment rate. Both numbers are demeaned within-firm to remove the firm fixed effect, so zeros on the axes correspond to
the firm mean values. For each bin, the best-fit line of the same color reflects the regression in Table 2.

Figure 4 visually illustrates how the volatility in the data gives rise to these results. It samples 500

observations randomly from each of the lowest and the highest bins of volatility, and plots the investment

rate against the value of Tobin’s q for each observation, along with regression lines with slopes that correspond

to the coefficients in Table 2. To relate to the fixed-effects regression, investment rate and Tobin’s q are

first demeaned within-firm. The lowest-volatility bin shows no particular relationship between q and the

investment rate, while the highest-volatility bin illustrates a fairly tight relationship.

In Table 2 and Figure 4, it may seem puzzling that the slope of the regression falls across bins of Tobin’s

q volatility, even as the R2 increases. Mathematically, to reconcile these findings, one needs an offsetting

source of higher volatility in Tobin’s q. Our analysis shows that innovation and learning are mechanisms

for generating that volatility. However, why the slope should fall across bins of volatility is a separate and

interesting question on its own.

As we will show later, high-tech firms exhibit more volatility in q than other firms. This suggests several

potential, related explanations for the pattern of falling slopes. One simple explanation could be that

the omission of intangible investment in Figure 4 is more important for higher-volatility firms. A second

explanation could be that the same firms have more convex adjustment costs, since the standard Tobin’s

q model (presented below) specifies an inverse relationship between the adjustment cost convexity and the

slope. This would be consistent with the suggestion in Peters and Taylor (2017) that intangible firms face

more convex adjustment cost for physical investment. A third could be that the same firms have more

market power, which causes the slope of the regression to fall, as argued in Cooper and Ejarque (2003). This
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last explanation applies naturally to R&D-intensive firms, which are often characterized by market power

gained from innovation.

In the online Internet Appendix, we consider each of these explanations: First, we show that the pattern

of falling slopes across volatility bins largely disappears when using the total investment and q measures of

Peters and Taylor (2017). Second, in an extension to our main model, we study firms with heterogeneous

adjustments costs and decreasing returns to scale, and in both cases we are able to reproduce the patterns

in Table 2 and Figure 4. However, our main focus is on mechanisms behind the volatility of Tobin’s q, not

behind the slope of the regression. Therefore, in the main analysis we study firms without any of these

features, in which case the slope of the investment-q regression should theoretically be the same for all firms.

If the large volatility in q is meaningless for investment, the improving fit of the investment-q regression

should not obtain. Greater variation in q provides the opportunity for the investment-q regression to work,

but does not force it to do so. Instead, our findings suggest that the information reflected in equity mar-

ket valuations is tightly connected to investment policies, and this relationship becomes the clearest when

valuations move the most.

In untabulated results, we observe that the pattern is also robust to adding year fixed effects; to excluding

all fixed effects; and to sorting on the stock price volatility instead of Tobin’s q volatility, confirming that

higher volatility comes from the numerator of q, not its denominator. In Figure B.13 in the online Internet

Appendix, we also connect these cross-sectional patterns with the aggregate time-series patterns from the

earlier figures, by showing that the fit of the regression increases across bins of volatility in Tobin’s q in both

the 1975–1995 and 1995-2015 subsamples. These results suggest that there have always been some firms for

which the investment-q regression was tighter due to greater dispersion in Tobin’s q, and that these firms

have become more important in the aggregate in recent years.

In sum, the stylized facts discussed in this section demonstrate that the investment-q regression works

better in settings with more dispersion in Tobin’s q, both in the cross-section and in the time-series. The

volatility is not merely noise, but rather is statistically informative about the firm’s investment policy.

In Section 3 below, we rationalize these facts using two mechanisms explaining why R&D-intensive firms

appearing in the data in more recent years are likely to exhibit a tighter relationship between their investments

and valuations.

3. Model

We develop a model of firm investment, extending the setup analyzed by Abel (2017) to account for R&D

innovations and, in turn, learning about the expected long-term growth in cash flows.
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3.1. Setup

Consider a competitive firm with capital Kt at time t, which accumulates according to

dKt = (It − δKt)dt, (3)

where It denotes the firm’s investment decision.

Similar to Erickson and Whited (2000), adjustments to the capital stock are linear homogeneous in I

and K

ψ(It,Kt, νt) =
a

2

(
It
Kt

)2

Kt + νtIt, (4)

where a is a positive constant so that the adjustment cost function is strictly convex. The term νt represents

a shock to the purchase price of capital. It follows a stochastic process with zero mean

dνt = −κνtdt+ σνdW
ν
t , (5)

where W ν
t is a standard Brownian motion. While the firm knows the current value of νt, the econometrician

does not. For the econometrician, νt is noise.

The firm produces cash flows according to a technology with constant returns to scale

Π(Kt, θt) = θtKt, (6)

where we use the output price as numéraire. Without loss of generality, we abstract from describing the

flexible labor decision.11

3.2. Innovations

Firms spend funds on research in the hopes of increasing their future profitability. These endeavors

are often viewed as risky. For example, either the pharmaceutical research generates a breakthrough drug

or it does not. To represent cash flows in this setting, we borrow from the literature on term structure

models with jump-enhanced stochastic processes.12 In particular, we model innovation jumps as part of the

stochastic process for cash flows in a manner similar to Das (2002). Alternatively, the increased volatility

from innovations can be obtained in other ways (e.g., through a simple increase of the Gaussian volatility

parameter), but innovation jumps are just as plausible.

11We can equivalently write the firm’s problem to include a labor decision. In this case, the firm produces according to a Cobb-
Douglas production function AtLαt K

1−α
t , where 0 < α < 1 and At > 0. It pays a constant wage rate w per unit of labor, set

to 1 for simplicity. The instantaneous cash flow of the firm is maxLt

[
AtLαt K

1−α
t − Lt

]
= (1− α)α

α
1−αA

1
1−α
t︸ ︷︷ ︸

≡θt

Kt ≡ Π(Kt, θt).

12For example, see Duffie et al. (2000), Johannes (2004), and Piazzesi (2010).
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We assume that innovations occur randomly. Once the firm innovates, its cash flow per unit of capital

jumps by a positive amount J , observed by the firm. The mean-reverting process for cash flows is:

dθt = λ(µ̄− θt)dt+ σθdW
θ
t + JdNt, (7)

where the mean profitability µ̄ is a known constant. The two Brownian motions (W ν
t and W θ

t ) are indepen-

dent. The last term embodies the innovation jump J , whose random arrival is governed by a Poisson process

with frequency given by

h(Φ) = ι1
(
1− e−ι2Φ

)
. (8)

Consistent with Thompson (2001), Klette and Kortum (2004), Aghion et al. (2005), and Warusawitha-

rana (2015), we assume that the research cost Φ increases the probability of an innovation. In fact, the

parametrization (8) implies that the success rate is increasing and concave in the cost Φ, where parameters

ι1 and ι2 are assumed to be positive. The success rate equals zero for Φ = 0, and the maximum success

rate, ι1, is attained in the limit Φ→∞.

For now we consider the research cost Φ as exogenously given, and Section 3.5 below endogenizes the

choice of Φ. For simplicity, our model considers an R&D decision made one time in the firm’s lifetime, rather

than a dynamic decision. This can be interpreted as the firm committing to a fixed level of R&D expenditure.

It allows us to connect our model to the cross-sectional distribution of firm-level R&D intensity, which is

relatively stable, without introducing a second capital accumulation decision into the firm’s problem. Our

motivation is the fact that R&D spending is much more stable within-firm than capital expenditures (e.g.

Hall, 2002), so that the most important variation is across firms rather than within firms. As a result, Φ is

not a decision variable in equation (10) below, because it is chosen at the beginning of the firm’s life.

Because the cash flow process θt is persistent, innovation jumps J carry forward into future cash flows.

Thus, in this model research spending affects future cash flows in two ways: it increases their unconditional

expectation and their riskiness. In the presence of jumps, the unconditional mean and the unconditional

variance of θt are

E[θt] = µ̄+
h(Φ)J

λ
, Var[θt] =

σ2
θ + h(Φ)J2

2λ
. (9)

Research spending increases expected future cash flows in proportion to the size of the innovation jump J

and the success rate of innovations, h(Φ). If the cash flow process (7) is more persistent, i.e., if λ is lower,

innovations will carry forward longer into the future, further increasing the expected cash flows. Moreover,

innovations also increase the variance through the jump J , a higher success rate h(Φ), and a higher persistence

(lower λ).
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The firm’s objective is to maximize the expected discounted sum of future cash flows, net of investment

costs,

V (Kt, θt, νt) = max
I

Et
[∫ ∞

t

e−r(s−t) {θsKs − Is − ψ(Is,Ks, νs)} ds
]
, (10)

subject to equations (3) and (4), where r is the interest rate. The information set of the firm at time t is

summarized by the capital stock Kt, the cash flow θt, and the shock to the purchase price of capital νt.

The Hamilton-Jacobi-Bellman equation associated with problem (10) is

rV = max
I
{θK − I − ψ(I,K, ν) +DV (K, θ, ν)} , (11)

where D is the differential operator. This leads to the first order condition for investment,

0 = VK(K, θ, ν)− 1− ψI(I,K, ν). (12)

In our model as in Hayashi (1982), the shadow cost of capital, marginal q, is equal to average q, V
K ,

V (K, θ, ν) = q(θ, ν)K. (13)

Replacing the adjustment cost function (4) yields the following relationship between the rate of investment

and q:

It
Kt

= −1

a
+

1

a
q(θt, νt)−

1

a
νt. (14)

When the firm’s cash flows θt become more volatile, it feeds directly into the volatility of q(θt, νt). Research

spending therefore increases the volatility of both cash flows and q. As shown in Section 3.4 below, the R2

of the investment-q regression increases with the variance of q. Thus, this innovation jump model delivers

our main result.

Using equation (13) and solving for the optimal investment, we obtain the following partial differential

equation for q (where qx denotes the partial derivative of q with respect to the state variable x):

0 = θt +
(1 + νt)

2

2a
− 1 + a(r + δ) + νt

a
q + λ(µ̄− θt)qθ − κνtqν

+
σ2
θ

2
qθθ +

σ2
ν

2
qνν +

1

2a
q2 + ι1

(
1− e−ι2Φ

)
[q(θt + J, νt)− q(θt, νt)] .

(15)

The last term is due to jumps.13 We solve this equation numerically by approximating q(θ, ν) with

Chebyshev polynomials.14 For the simulated data in Section 3.4, we use the following calibration: a = 16,

13See Merton (1971, p. 396) for a description of Itô’s lemma for Poisson processes.
14Since θ and ν are both mean-reverting, we define a grid that is centered on {µ̄, 0}. The algorithm yields a very accurate

solution, with an approximation error of magnitude 10−22 obtained with six polynomials in each dimension. For a similar
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r = 3%, δ = 10%, λ = 0.5, σθ = 0.087, κ = 5000, σν = 40, µ̄ = 0.15, ι1 = 1, ι2 = 0.2, and (J,Φ) ∈

{(0, 0), (0.025, 5), (0.05, 20)}.

3.3. Learning

While firms do invest in the possibility of innovations and future increased profits, in this section we

focus on another aspect of research. Research-intensive firms are in the business of learning. The updating

of beliefs about cash flows through time can, by itself, generate volatile valuations. To allow for clear

comparison between this model and the innovation model above, we shut down innovation jumps so that the

research spending has no effect on future cash flows. Instead, we view research as the purchase of a signal

about the firm’s future mean profitability.

In this setting, the cash flow per unit of capital θt follows the mean reverting process

dθt = λ(µt − θt)dt+ σθdW
θ
t . (16)

While the instantaneous cash flow θt is observable, its long-term mean µt is not. The firm forms expectations

over its future stream of cash flows, but cannot perfectly infer the process driving cash flows from past

realizations because the unobservable long-term mean µt evolves stochastically.

The long-term mean µt also follows a mean-reverting process

dµt = η(µ̄− µt)dt+ σµdW
µ
t . (17)

The firm learns about the long-term mean from two sources. The first source is free. The firm uses

information from past cash-flow realizations in order to infer the long-term mean µt in the process (16). The

second source is costly. The firm may purchase a signal st that is informative about changes in the long-term

mean dWµ
t ,

dst = dWµ
t +

1√
Φ
dW s

t , (18)

where all Brownian motions (W ν
t , W θ

t , Wµ
t , and W s

t ) are independent. The parameter Φ ≥ 0 dictates the

informativeness of the signal. For now we consider Φ as exogenously given, and Section 3.5 below discusses

how the signal informativeness Φ is optimally chosen ex ante by the firm.

Denote by Ft the information set of the firm at time t. Conditional on this information set, the firm

forms beliefs about the unobservable long-term mean µt. We refer to the posterior mean of µt, µ̂t ≡ E[µt|Ft],

as the filter, and to the posterior variance of µt, ζt ≡ E[(µt− µ̂t)2|Ft], as the Bayesian uncertainty. Standard

filtering theory (Liptser and Shiryaev, 2001) implies that the distribution of µt conditional on Ft is Gaussian

approach, see Alti (2003).
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with mean µ̂t and variance ζt:

µt ∼ N (µ̂t, ζt). (19)

The following proposition and its corollary obtain from filtering theory (theorem 12.7, p. 36 of Liptser

and Shiryaev, 2001), with the proof provided in Appendix A.2.

Proposition 1. (Learning) The filter µ̂t evolves according to

dµ̂t = η(µ̄− µ̂t)dt+
λζt
σθ

dŴ θ
t + σµ

√
Φ

1 + Φ
dŴ s

t , (20)

where dŴ θ
t ≡ dW θ

t + λ
σθ

(µt− µ̂t)dt represents the “surprise” component of the change in cash flows per unit

of capital and dŴ s
t ≡

√
Φ

1+Φdst is a scaled version of the signal in equation (18), such that Ŵ s
t is a standard

Brownian motion. The Bayesian uncertainty ζt follows the locally deterministic process

dζt
dt

=
σ2
µ

1 + Φ
− 2ηζt −

λ2ζ2
t

σ2
θ

. (21)

The standard Brownian motion dŴ θ
t arises as follows. The firm expects a change in cash flows per unit of

capital of λ(µ̂t− θt)dt, but instead observes the realization dθt. The difference, dθt−λ(µ̂t− θt)dt, represents

the unexpected change, i.e., the “surprise.” Dividing this difference by σθ yields the standard Brownian

motion dŴ θ
t . This Brownian motion is distinct from the true cash-flow shock dW θ

t which is unobservable

by the firm, because it incorporates firm’s expectations of future cash-flow growth (see Appendix A.2).

We characterize the stationary solution to this learning problem. We assume that enough time has passed

such that the Bayesian uncertainty has reached a steady state. This is a common assumption in the literature

on incomplete information (e.g., Scheinkman and Xiong, 2003; Dumas et al., 2009), and it fits well in our

model with infinite horizon. The steady-state value for ζ, ζ̄, is obtained by setting the right-hand side of

equation (21) to zero. This yields a quadratic equation with only one positive root:

ζ̄ =
σ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (22)

If σµ > 0, learning is constantly regenerated and the steady-state Bayesian uncertainty is positive. It is

increasing in σµ, decreasing in Φ, and goes to zero only in the limiting case as Φ → ∞ (when µt becomes

perfectly observable).

If σµ = 0, the long-term mean is a constant, µt = µ̄,∀t. In this case, we assume that there has been a

sufficiently long period of learning for the firm to observe µ̄. Accordingly, the Bayesian uncertainty decays

to zero. We refer to this case as a model without learning.

Replacing the steady state uncertainty in the diffusion of µ̂t in Proposition 1 allows us to compute the

stationary solution for the instantaneous variance of the filter. This variance, which we characterize in the
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following corollary, measures the intensity with which the firm is learning and updating its beliefs about the

long-term mean µt.

Corollary 1.1. The instantaneous variance of the filter,

Vart[dµ̂t] = σ2
µ − 2ηζ̄, (23)

is strictly increasing in both σµ and Φ.

According to Corollary 1.1, the variance of the filter increases when there is more uncertainty about the

long-term mean µt or when the firm acquires information through a more informative signal Φ. Although

the filtered long-term mean µ̂t is less volatile than the truth µt (because the filter is a projection of µt on

the observation filtration of the firm), Corollary 1.1 shows that learning with a more informative signal Φ

strictly increases the variance of the filter. In the limit when Φ → ∞, the firm perfectly observes µt, the

Bayesian uncertainty ζ̄ collapses to zero, and the variance of the filter reaches the instantaneous variance of

the unobserved process, σ2
µ.

Furthermore, Corollary 1.1 shows that learning affects the instantaneous variance of the filter and the

Bayesian uncertainty in opposite ways: learning with more informative signals (higher Φ) increases the

variance of the filter Vart[dµ̂t] in equation (23), but it decreases the Bayesian uncertainty ζ̄ in equation (22).

The instantaneous variance of the filter is not be confused with the Bayesian uncertainty. The former is a

measure of time variation in firm’s beliefs. The latter is a measure of uncertainty about µt conditional on

the information set Ft. In other words, although the firm decreases uncertainty through learning at any

moment in time, its beliefs become more volatile as they are more aggressively updated from one moment

to the other.

Two key results arise from Proposition 1 and its Corollary, reflecting the two sources of information from

which firms learn. We refer to dŴ θ
t as cash-flow shocks and to dŴ s

t as information shocks. The first result is

that learning from cash-flow realizations induces a positive correlation between the filter µ̂t and cash flows θt,

through cash-flow shocks dŴ θ
t . This extrapolative feature of learning (Brennan, 1998) amplifies the impact

of cash-flow shocks. Second, learning from the signal st causes the firm’s estimate of the long-term cash-flow

mean µ̂t to respond to information shocks dŴ s
t . This increases the variance of µ̂t.

We note that the learning taking place does not change the instantaneous volatility of the cash-flow

process (16) itself, which remains constant for any level of σµ. In fact, the long-term mean of θt, its

conditional variance, and its unconditional variance do not depend on the intensity of firm’s learning. These

values are µ̄, σθ, and
√
σ2
θ +

λ2σ2
µ

η(η+λ)/
√

2λ, respectively. Learning, however, does increase the volatility of the

filter through the continuous updating of the long-term cash-flow mean µ̂t.

Similarly as before, the firm’s objective is to maximize the expected discounted sum of future cash flows,
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net of investment costs,

V (Kt, θt, µ̂t, νt) = max
I

Et
[∫ ∞

t

e−r(s−t) {θsKs − Is − ψ(Is,Ks, νs)} ds
]
, (24)

subject to equations (3) and (4). The difference with the innovation jump maximand in equation (10) is that

the information set of the firm at time t also includes the conditional expectation of cash-flow growth µ̂t.

In the learning model, as in the innovation model, the Hayashi (1982) conditions hold, and the first order

condition for investment can be written as:

It
Kt

= −1

a
+

1

a
q(θt, µ̂t, νt)−

1

a
νt. (25)

Replacing this relationship in the HJB equation associated with problem (24) yields the following partial

differential equation for q:

0 = θt +
(1 + νt)

2

2a
− 1 + a(r + δ) + νt

a
q + λ(µ̂t − θt)qθ + η(µ̄− µ̂t)qµ̂ − κνtqν

+
σ2
θ

2
qθθ +

(
σ2
µ

2
− ηζ̄

)
qµ̂µ̂ +

σ2
ν

2
qνν + λζ̄qθµ̂ +

1

2a
q2.

(26)

We solve this equation numerically using the same method as before, with a state space grid centered

on {µ̄, µ̄, 0}. For the simulations in Section 3.4, we use the following calibration: a = 16, r = 3%, δ = 10%,

λ = 0.5, σθ = 0.1, κ = 5000, σν = 40, µ̄ = 0.25, η = 0.5, and (σµ,Φ) ∈ {(0, 0), (0.15, 0), (0.15, 20)}. When we

choose σµ = 0.15, the calibration results in approximately the same unconditional moments for cash flows θ

as in the model with innovation jumps in which (J,Φ) = (0.05, 20).

3.4. The relationship between investment and q

Without ν, the econometrician would observe a deterministic relationship between investment and q in

equations (14) or (25) and, counterfactually, this relationship would always have an R2 of one. In both cases,

the shock to the capital purchase price causes the R2 to be below one.

For ease of exposition, we let xt denote the state vector at time t. In the model with innovations,

xt ≡ {θt, νt}; in the one with learning, xt ≡ {θt, µ̂t, νt}. In both models, the R2 has the same analytical

expression:

R2 =
Var[q(xt)]

(
1− Cov[q(xt),νt]

Var[q(xt)]

)2

Var[q(xt)] + Var[νt]− 2 Cov[q(xt), νt]
. (27)

The R2 coefficient increases with the variance of q as long as the covariance between q and ν is negligible.15

15The R2 depends on the relationship between qt and νt. In our numerical calibration, we ensure that the covariance between
qt and νt is virtually zero, i.e., qν ≈ 0. This occurs for large values of κ, i.e., when the persistence of νt is close to zero. A
non-negligible persistence of νt creates temporal dependence through which qt depends on νt. Even in this case, the covariance
term in equation (27) is of small magnitude, and does not impact our main intuition.
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Notice also that a stronger regression coefficient for q in (14) or (25) does not mechanically affect the R2,

since the adjustment cost parameter a simplifies away from (27).

The firm’s innovations and learning affect the R2. An application of Itô’s lemma on the innovation-derived

q(θt, νt) yields:

dq = ξ1(θt, νt)dt+ qθσθdW
θ
t + qνσνdW

ν
t + [q(θt, νt)− q(θt− , νt)] dNt, (28)

where ξ1(θt, νt) denotes the drift (its specific form does not matter for our analysis). Research spending by

the firm increases the probability of innovation jumps, and with it the volatility of Tobin’s q through the

last term above. According to equation (27), an increased volatility in q boosts the R2 of the investment-q

regression.

The firm’s learning also increases the volatility of q(θt, µ̂t, νt), as shown in:

dq = ξ2(θt, µ̂t, νt)dt+

(
qθσθ + qµ̂

λ

σθ
ζ̄

)
dŴ θ

t + qµ̂σµ

√
Φ

1 + Φ
dŴ s

t + qνσνdW
ν
t , (29)

When the firm learns about the unobservable productivity growth µt, q becomes more sensitive to cash-flow

shocks dŴ θ
t through the second term in brackets above. Tobin’s q also becomes sensitive to information

shocks dŴ s
t through the third term above. Both these effects increase the volatility of q(θt, µ̂t, νt) and,

according to equation (27), the R2 of the investment-q regression.

We illustrate the impact of innovations and learning on the R2 by means of simulations. To this end,

we implement a discretization of the continuous-time processes at a yearly frequency (see Appendix A.3).

We then solve for the partial differential equation and compute qt for each point of the state space. The

resulting value for qt can then be replaced in the first order condition for investment, yielding the investment

rate It/Kt. This completes the dataset necessary for implementing investment-q regressions.

Figure 5 plots as an example one simulation of 100 yearly observations. The three upper panels report

simulations for the innovation model of Section 3.2, while the lower three report simulations for the learning

model of Section 3.3. The horizontal axis in each panel is the marginal q. The vertical axis represents the

optimal investment rate It/Kt.

In the case of the innovation model, we compare three types of firms. In the left panel, we consider the

case of a firm that has no opportunity for innovations (J = 0) and does not spend on research (Φ = 0). In

the middle and the right panels we gradually increase J to 0.025 and then 0.05, and Φ to 5 and then 20.

The three panels show that research spending increases the volatility of Tobin’s q and consequently the fit

of the regression. The volatility of Tobin’s q obtained from 5,000 such simulations averages 0.13 in the first

panel, 0.15 in the second panel, and 0.18 in the third panel. The average R2 coefficient also increases from

10%, to 12%, and 17% respectively.
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Fig. 5. Relationship between investment and q in the innovation model of Section 3.2 (upper panels) and in the learning model
of Section 3.3 (lower panels).

The bins are recalculated separately for the two subperiods 1975–1995 and 1995–2015. In each model, we simulate 100 yearly
data points for three different firms. Upper panels: in the left panel, the firm has no innovation opportunity (J = 0,Φ = 0);
in the middle and right panels, we gradually increase J and Φ. Lower panels: in the left panel, the firm does not learn about
µt, which is held constant at µ̄; in the middle panel, the firm learns about µt exclusively from the cash-flow process (16), i.e.,
Φ = 0; in the right panel, the firm learns about µt from the cash-flow process (16) and from the signal (18) with Φ = 20. The
rest of the calibration used for these simulations is given in Section 3.2 for the innovation model and in Section 3.3 for the
learning model.
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Turning to the learning model, the left panel corresponds to the model without learning, that is, the firm

sets µt = µ̄,∀t. In the middle panel, the firm learns about µt, but only using the observable process for θt,

i.e., Φ = 0. In the right panel, the firm also learns through the signal in equation (18), with Φ = 20. Changes

in µt are not yet perfectly observed, but with Φ = 20 the signal in (18) is more informative relative to the

cash-flow signal in equation (16). The three panels show that learning improves the fit of the regression. As

elaborated above, this occurs through an increase in the volatility of the regressor q, from 0.18, to 0.39, and

0.45. The R2 coefficient increases from 18%, to 48%, and 56%.

Although innovation and learning improve the R2 of the investment-q regression, they do not influence

its slope, which remains equal to 1/a across all models. This can be seen in Figure 5, where the fitted line

remains the same in all panels. In contrast, in the data of Figure 4 the slope decreases across the bins.

With a higher adjustment cost parameter a, firms would be characterized by lower slope coefficients 1/a.

Alternatively, with decreasing returns to scale (α < 1), the lower slope coefficients also obtain. A higher

adjustment cost parameter among R&D firms, as well as decreasing returns to scale representing market

power from R&D innovations, are two of the possible explanations we investigate in our online Internet

Appendix for the falling slope among more R&D-intensive firms.

3.5. Endogenous decision to invest in innovation and learning

We endogenize the decision to invest in research. In the innovation-based model, more research (i.e., a

higher Φ) increases the probability of a persistent jump in cash flows. In the learning-based model, it leads

to better information from which to make investment decisions. As a trade-off to these benefits, R&D is

costly (e.g., Detemple and Kihlstrom, 1987). We consider a static decision in which the firm makes a choice

of Φ at time 0 and maintains this capacity over its lifetime.

The firm value immediately after the choice of Φ is defined as Ṽ (·), and its associated cost, c(Φ), is

a strictly increasing and convex function with c′(0) = 0. With Φ as a parameter in Ṽ (·), the problem is

equivalent to the earlier models without an endogenous Φ. The optimal Φ∗ is defined by the first-order

condition ṼΦ(·) = c′(Φ∗), and there is an interior solution if and only if ṼΦΦ(·)− c′′(Φ∗) < 0.

Jumps J and the uncertainty of the cash-flow mean σµ are central features of the innovation and learning

mechanisms respectively. We are therefore interested in investigating whether the optimal purchase of

research increases with the magnitude of the jump J and uncertainty σµ. Differentiating the first-order

condition with respect to J (in the model with innovation jumps) and with respect to σµ (in the model with
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learning) and rearranging, we get

dΦ∗

dJ
=

ṼΦJ(·)
c′′(Φ∗)− ṼΦΦ(·)

(30)

dΦ∗

dσµ
=

ṼΦσµ(·)
c′′(Φ∗)− ṼΦΦ(·)

. (31)

In both cases, the denominator is positive if the problem has an interior solution. We see that the optimal

amount of research Φ∗ increases in the innovation jump J or in the uncertainty σµ if and only if an increase

in the size of the innovation jump or in the uncertainty about µt increases the marginal benefit of research

(ṼΦJ(·) > 0 or ṼΦσµ(·) > 0).

The problem therefore reduces to showing that ṼΦJ(·) > 0 and ṼΦσµ(·) > 0. While there is no closed-

form proof of these inequalities, they can be checked numerically as Ṽ (·) is just the value function from the

problem without an endogenous research choice Φ. Our numerical results demonstrate that this is indeed

the case for both innovation and learning models.16

These results imply that firms operating in environments prone to large innovation jumps J or more

uncertain environments, e.g., high-tech firms, optimally choose to invest more in research. In other words,

firms commit to a higher research intensity Φ if they expect large innovation jumps J or face more uncertainty

σµ in their cash-flow mean. This amplifies the direct effects that larger jumps and more uncertainty already

have on the volatility of Tobin’s q and hence on the R2 fit of the investment-q regression, discussed in Sections

3.2, 3.3, and 3.4 above. Altogether, investments in innovation and learning generate a strong cross-sectional

implication: the investment-q regression performs better for firms that spend more on R&D.

4. Empirical analysis of the model predictions

In this section, we dig deeper into the empirical predictions of the model.

4.1. Better performance in high-tech industries

Section 3.5 contains the main prediction of the model, where the investment-q regression performs better

among firms that endogenously choose to expend greater resources on research. Empirically, we are interested

in identifying groups of firms where this is most likely to take place. We focus on firms that decide to spend

more on R&D. Our proposed innovation and learning mechanisms should cause the investment-q regression

to work better in industries featuring high R&D. This insight provides testable cross-sectional implications

of the model.

16The numerical results are available in Appendix C.
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(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It/Kt-1 It/Kt-1

qt-1 0.0167∗∗∗ 0.0111∗∗∗ 0.0226∗∗∗ 0.0231∗∗∗

(0.000629) (0.000335) (0.00149) (0.00172)
Sample Non-high-tech High-tech Non-high-tech, High-tech,

pre-1995 pre-1995
Firm FE? Yes Yes Yes Yes
Obs. 103959 31824 41215 8099
R2 0.0913 0.174 0.0516 0.163

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3.
This table performs panel regressions of investment on lagged Tobin’s q using annual data from Compustat.

The data are annual Compustat from 1975-2015. “High-tech” refers to SIC codes 283, 357, 366, 367, 382, 384, and 737,
following Brown et al. (2009). Columns 3 and 4 restrict to pre-1995 firm-years. Investment and Tobin’s q are winsorized at the
1st and 99th percentiles. Standard errors are clustered by firm, and the table reports the within-firm R2 of the regression.

For an operational definition of a research-intensive industry, we use the following seven SIC codes: 283

(drugs), 357 (office and computing equipment), 366 (communications equipment), 367 (electronic compo-

nents), 382 (scientific instruments), 384 (medical instruments), and 737 (software). We refer to these as

“research-intensive” or “high-tech” industries for the remainder of this paper. The industry classification

follows Brown et al. (2009), which shows that the seven industries account for nearly all the growth in

aggregate R&D during the 1990s.

We build up our analysis of research-intensive industries in several layers. First, we examine the empirical

distribution of Tobin’s q volatility in these industries compared to the average Compustat firm. Panel A

of Figure 6 calculates the within-firm volatility of Tobin’s q for each firm, and plots the empirical density

of this volatility, separating out high-tech firms from the other industries. This volatility follows a skewed

distribution. It is higher on average for the high-tech firms than for the others. Finally, Panel B of Figure

6 repeats this analysis using the total q measure of Peters and Taylor (2017). As expected, total q is less

volatile than standard q, but it is still more volatile for high-tech than other firms.

It is not surprising that market valuations of high-tech companies are particularly volatile. What is

less clear is that these fluctuations are highly predictive of investment, as expected under the q theory

of investment. This contrasts with the alternative view that market fluctuations arise from problems in

measuring the firm’s capital stock or from difficulties outsiders face in valuing the firm, which would make

these fluctuations simply exogenous noise with respect to the firm’s investment policy.

Tables 3 and 4 repeat the panel regressions of investment on lagged q, as specified earlier in equation (2)

and implemented in Table 2, where various columns separate out high-tech from other industries.

Columns 1 and 2 of Table 3 show that the standard investment-q panel regression fares better among

high-tech firms: the R2 value from the regression almost doubles from 9% to 17% when we move from the
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Fig. 6. Empirical distribution of the within-firm volatility of Tobin’s q in annual Compustat from 1975 to 2015.
The figure calculates the volatility for each firm, then plots the distribution of volatility for firms in high-tech industries

separately from other industries. High-tech industries are defined as SIC codes 283, 357, 366, 367, 382, 384, and 737, following
Brown et al. (2009). Panel A uses the standard measure of Tobin’s q, Panel B uses the total q measure of Peters and Taylor
(2017).
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(1) (2) (3) (4)
It/Kt-1 It/Kt-1 It

tot/Kt-1 It
tot/Kt-1

qt-1 0.00879∗∗∗ 0.0107∗∗∗ 0.0116∗∗∗ 0.00780∗∗∗

(0.000249) (0.000310) (0.000492) (0.000284)
Sample High-tech High-tech Non-high-tech High-tech
Firm FE? No Yes Yes Yes
Year FE? No Yes No No
Obs. 31824 31824 103949 31824
R2 0.180 0.261 0.0653 0.151

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.
This table performs panel regressions of investment on lagged Tobin’s q using annual data from Compustat.

The regressions are as in Table 3, except as noted in each column. Column 1 drops both firm and year fixed effects, and
Column 2 includes both firm and year fixed effects as is done in Peters and Taylor (2017). In columns 3 and 4, R&D is added
to capital expenditures as a measure of intangible investment. Both measure of investment, and Tobin’s q, are winsorized at
the 1st and 99th percentiles. Standard errors are clustered by firm, and the table reports the within-firm R2 of the regression.

non-tech to the high-tech subsample.

One may object that, since we already have shown that the investment-q regression works better in

recent years, this comparison simply captures the increasing importance of high-tech firms towards the end

of the sample. To check this, in Columns 3 and 4 we restrict the sample to years prior to 1995. The

same discrepancy holds for these early years: the R2 of the panel regression increases from 5% for non-tech

industries to 16% for high-tech, in accord with the investment-q regression working better for high-tech

industries.

Table 4 checks robustness to some alternative approaches. Column 1 shows that firm fixed effects are

not driving the performance of the regression, as the (overall) R2 from the pooled regression is similar to the

(within) R2 reported in Table 3. Column 2 shows that the fit of the regression improves even more when

we add time fixed effects, as is done in some of the other papers in the Tobin’s q literature. In additional

results (available in Appendix B of the online Internet Appendix) we document further robustness to various

combinations of fixed effects and approaches to winsorizing.

Columns 3 and 4 return to our main panel specification with firm fixed effects but no time fixed effect,

and adds in annual R&D expense plus 30% of annual SG&A expense as a measure of intangible investment,

following Peters and Taylor (2017). The conclusion remains the same as before: the regression works better

in high-tech industries (R2 = 15%) than in other industries (R2 = 7%).

To show that the results extend beyond the coarse high-tech proxy, we examine R2 values using more

general measures of R&D intensity. In Figure 7, we examine evidence at the firm level. We sort firms in the

Compustat panel into four bins based on their average R&D intensity (defined as the ratio of annual R&D

to total assets) within their lifetime in Compustat, dropping any firms for which this average is zero. Within
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Fig. 7. R2 values from the panel investment-q regressions, performed separately for each bin of firm-level R&D intensity.
R&D intensity is annual R&D expense divided by book assets, assigning zero for missing R&D observations. It is calculated

separately for each firm-year in Compustat from 1975-2015, then averaged within-firm.

each bin, we estimate the panel investment-q regression. The figure plots the R2 values obtained from the

regression in each bin. These values show an increasing pattern, from 9% in the lowest bin to over 19% in

the highest bin.

In Figure 8, we perform a similar exercise at the industry level. We perform the investment-q regression

separately within each 3-digit SIC industry in Compustat, and plot the resulting R2 values against average

R&D intensity calculated across firm-years in that industry. In constructing this figure, we drop 56 industries

(22% of the sample) for which average R&D intensity is less than 0.1% of total assets. We also drop five

industries with fewer than five firm-year observations in Compustat.

Figure 8 plots the R2 values against the log of industry average R&D intensity. The figure shows a clear

positive association. The seven high-tech industries identified in the previous analysis are marked with an

“×” in the figure. They cluster near each other at high values of R&D intensity, and relatively high R2

values, although not the highest observed R2 across all industries.

The finding that the standard investment-q regression works better in high-tech industries was previously

established in Peters and Taylor (2017). In their Section 5.1, Peters and Taylor use several cross-sectional

proxies beyond the simple industry classification to explore a number of explanations for this fact, but

ultimately reject all of them. They conclude: “Why the classic q-theory fits the data better in high-intangible

settings is also an interesting open question.” Our innovation and learning mechanisms provide plausible

explanations for this finding.

The growth of high-tech industries is key to understanding the improved fit of the aggregate investment-q

relationship in recent years, and by extension the future empirical performance of the q theory of investment.
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Fig. 8. Industry-level investment-q correlations and R&D intensity.
Each dot corresponds to a 3-digit SIC industry. The y-axis plots R2 values from the panel investment-q regression performed

separately in each industry. The x-axis plots the log of industry-average R&D intensity. R&D intensity is defined as annual
R&D expense divided by book assets, assigning zero for missing R&D data. It is calculated separately for each firm-year in
Compustat from 1975-2015, then averaged across firm-years in each 3-digit SIC industry in Compustat. The figure depicts only
industries where this average is at least 0.001, and for which there are at least five firm-year observations in Compustat. The
“×” markers denote the R&D-intensive industries identified in Brown et al. (2009).

Figure 9 shows that the firms in the high-tech industry classification represent a growing fraction of the

number of firms and of book assets in Compustat. Similarly, Peters and Taylor (2017) show that their

measure of intangible capital, which capitalizes past intangible investments such as R&D and SG&A, also

increases over time in both Compustat and the aggregate data from the Fed Flow of Funds.

In conjunction with our cross-sectional findings, these trends suggest that the q theory of investment

may have been the right theory at the wrong time. While the theory has traditionally not fared well for the

capital-intensive firms that dominated the economy when the theory was first developed, it turns out to be

well-suited for the new research-intensive economy that features wider endogenous swings in valuations and

investments.

4.2. Innovation versus learning

We next explore a subtler implication of the model relating to the role of cash flows. Innovation jumps

impart more volatility to cash flows, and therefore to Tobin’s q. In fact, the correlation between cash flows

and q is nearly perfect, but for the negligible influence of νt. With learning, however, the firm chooses to

take into account other signals than contemporaneous cash flows. The correlation between cash flows and q

is therefore lower with more learning. While more research through innovation or learning increases the R2

of the investment-q relationship, the two mechanisms have opposite predictions for the correlation between

cash flows and Tobin’s q. In contrast to innovation, more research through learning decreases the correlation

between cash flows and Tobin’s q.
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Fig. 9. Fraction of firms in Compustat each year that fall into our classification of high-tech industries.
The blue line is an equal-weighted average, while the red line weighs firms by their shareholders’ equity. High-tech industries

are defined as SIC codes 283, 357, 366, 367, 382, 384, and 737, following Brown et al. (2009).

Building on this intuition, we separate Compustat firms by industry at the 3-digit SIC code, and we

investigate how the tightness of the fit between investment and q is related to the tightness of the fit between

cash flow and Tobin’s q. Within each industry, we estimate fixed-effects regressions of cash flow on lagged

q, then of investment on lagged q. We save the R2 values from both of these regressions for each industry,

and plot them in Figure 10, retaining only industries with at least five firm-years.

The pattern in Figure 10 is consistent with the learning mechanism. The industries with the tightest

connection between q and investment (the highest values on the y-axis) are also the industries with the

weakest connection between q and cash flow (the left-most values on the x-axis). Conversely, the industries

with the tightest connection between q and cash flow are also the industries with the weakest connection

between q and investment. The overall pattern is contrary to what we would expect with innovation jumps,

suggesting that the investment-q regression works better when q is less predictive of cash flows over a short

horizon, which is consistent with the learning mechanism. While our findings do not indicate that there is no

innovation jump, they do suggest empirical effects in line with the firm learning and updating with signals

other than cash flows.

Both axes of Figure 10 measure R2 values, which are mechanically bounded between zero and one. For

this reason, it may seem difficult to judge formally the relationship plotted in the figure. The same concern

could apply to Figure 8, in which the vertical axis also plotted R2 values. To address this concern, Figures

B.14 and B.15 in the online Internet Appendix repeat the analysis of Figures 8 and 10, but transform the R2

values via the negative logistic transformation ln(R2)− ln(1−R2), motivated by the analysis in Durnev et al.

(2004). The transformed values capture the difference between the explained and unexplained variation in
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Fig. 10. R2 of investment-q regressions and cash-flow-q regressions by industry.
Each dot corresponds to a 3-digit SIC industry classification. The x-axis plots, for each industry, the R2 value from a fixed-

effects regression of cash flow on lagged Tobin’s q. The y-axis plots, for the same industry, the R2 from a fixed-effects regression
of investment on lagged Tobin’s q. The data are annual Compustat from 1975-2015. The figure depicts only industries for
which there are at least five firm-year observations in Compustat. Cash flow is defined as income before extraordinary items
plus depreciation expense divided by gross property, plant, and equipment. Cash flow, investment, and q are all winsorized at
the 1st and 99th percentiles.

the model. Unlike the raw R2s, the transformed values are not bounded between zero and one, making it

more natural to model them as linear functions. The figures also fit lines through the transformed points.

In both cases, the estimated linear associations are statistically significant, confirming the results seen in

Figures 8 and 10.

4.3. Accounting for measurement error in q

In our setting, marginal q is always equal to average q. Empirically, however, Tobin’s average q may be

a poor proxy for a number of reasons, such as measurement error in the firm’s capital stock. In this section,

we empirically account for measurement error.17

We draw on the large literature on measurement error in Tobin’s q. Two contributions are especially

relevant to our work. First, Erickson and Whited (2000) develop an estimator that is robust to measurement

error by exploiting identifying information in the third- and higher-order moments of the empirical distri-

bution of Tobin’s q. Erickson et al. (2014) improve on this approach by focusing on cumulants rather than

moments. These approaches yield, among other things, estimates of two population R2 values: first, the R2

from the measurement regression of Tobin’s average q on “true” marginal q, labeled τ2; and second, the R2

from the investment regression of investment rate on “true” marginal q, labeled ρ2. We use these parameter

17Throughout this section, we refer to measurement error that satisfies the identifying assumptions in Erickson and Whited
(2000).
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Fig. 11. Measurement error and investment-q R2 over time.
This figure plots the time-series of τ2 and ρ2 estimates recovered from the cumulant-estimator approach of Erickson, Jiang,

and Whited (2014). Each estimate is calculated from a ten-year window ending in the year labeled on the axis. Solid lines use
the standard definitions of investment and Tobin’s q, while dashed lines use the total-q and total-investment measures defined
in Peters and Taylor (2017).

estimates to quantify the cross-sectional importance of measurement error and the “true” performance of

the q theory.

Second, Peters and Taylor (2017) focus on the role of intangibles, which are missing from the standard

measurement of investment and average q. They propose to capitalize R&D and SG&A expenditures as

intangible investments, and show that this approach improves the performance of the regression. The

adjustment is largest for high-tech firms, for whom intangibles are relatively more important. We examine

how the adjustment behaves in the cross-section.

As motivating evidence, we first examine the evolution of τ2 and ρ2 through time with and without the

adjustment for intangibles. Figure 11 displays the time-series of τ2 and ρ2. The estimators of Erickson et al.

(2014) are applied to rolling ten-year windows of Compustat data, using three cumulants to exactly identify

the system. The figure separately plots the series with (dashed lines) and without (solid lines) intangibles

in the measures of investment and q.

First, consider the two series for τ2, which are displayed in the left panel of Figure 11. These capture

the degree of measurement error driving a wedge between average q and marginal q. A higher value of τ2

corresponds to a greater R2 in the measurement regression, and thus a lower degree of measurement error.

In the early years, Figure 11 shows that the τ2 values for total q and standard q are close together. This

suggests that intangibles did not create a large amount of measurement error, consistent with the plots of

aggregate intangible investment presented in Peters and Taylor (2017). In the later years, however, the two

lines diverge, with the total-q intangible adjustment yielding a consistently better proxy for marginal q. Since

the late 1990s, the quality of the standard q proxy has worsened, while the quality of total q has improved.
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As is well-known, intangibles are an increasingly important feature of the economy and accounting for them

improves the measurement.

Second, consider the two series for ρ2, which are displayed in the right panel of Figure 11. These

capture the performance of the “true” investment regression, i.e., the regression of investment on the “true”

marginal q. Using total investment, which includes R&D expenses and 30% of SG&A expenses as intangible

investment, produces a consistently better fit than the standard investment with physical capital expenditures

only. Assuming that the cumulant-estimator approach has addressed measurement error in Tobin’s q, the

discrepancy between total investment and standard investment is not driven by measurement error. Rather,

it suggests that q theory also applies to intangible investment, and accounting for intangibles improves the

empirical performance of the q theory.

Most importantly for our purpose, the ρ2 values for both investment measures have trended upwards over

time. Again, under the identifying assumptions of Erickson et al. (2014), this is not due to measurement error.

Instead, it reflects the fact that the explanatory power of “true” marginal q on investment has improved,

consistent with the motivating evidence from Figures 1 and 2. The improved fit of the regression is the main

prediction of our model. Figure 11 empirically summarizes the importance of measurement error vis-à-vis

the improving investment-q relationship.

Figures B.16 through B.21 in Appendix B of the online Internet Appendix repeat this analysis using a

greater number of cumulants to overidentify the system, and also using a twenty-year instead of a ten-year

rolling window. The broad conclusion of all the figures is the same as in Figure 11: total q outperforms

standard q, with the gap between the two widening in recent years; and the performance of the measurement-

error-corrected investment-q regression improves, regardless of whether total q or standard q is used.

In unreported results, we explore the ρ2 evidence cross-sectionally, between firms with above-median

volatility of Tobin’s q and those with below-median volatility. The R2 fit remains much higher among firms

with higher volatility of Tobin’s q, after correcting for the measurement error using Erickson et al. (2014).

This pattern holds for both standard q (55%>20%) and total q (64%>28%). When firms are separated into

high-tech and other industries, the fit of the q theory is higher among high-tech firms, regardless of whether

standard q (51%>22%) or total q (56%>35%) is used to proxy for marginal q.

In sum, the investment-q regression fits better among high-tech industries and those with high volatility

in Tobin’s q, after adjusting for measurement error in Tobin’s q as in Erickson et al. (2014), and after

accounting for intangibles as in Peters and Taylor (2017). This suggests that the empirical support for our

model operates through a better fit of the true regression of investment on marginal q, not through differences

in measurement error.
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5. Conclusion

This paper is motivated by the empirical finding that the relationship between aggregate investment

and Tobin’s q has become remarkably tight in recent years. This observation stands in contrast to a large

literature showing that this regression performed quite poorly in the past. We attribute the improvement

in the empirical performance of the classic regression to an increase in the empirical variation in Tobin’s q

relative to residual factors affecting investment.

We rationalize these patterns with two possible mechanisms. On one hand, research has the potential of

producing innovations leading to higher future cash flows, where the random arrival of the innovation jump

introduces volatility in valuations. On the other hand, learning leads to more updating about investment

decisions and valuations. Both mechanisms endogenously produce more variation in Tobin’s q, improving

the fit of the regression. Thus, the improved fit of the investment-q relationship is related to the substantial

growth in expenditures on research and other intangibles in the aggregate economy. We investigate the

model’s predictions in the cross-section of firms in Compustat, and find empirical support.

In conclusion, the q theory of investment can describe the data quite well, when given sufficient variation in

the key regression variable. Counterintuitively, this variation arises in firms far different from the canonical

capital-intensive firms for which the theory was initially developed. Our findings suggest that corporate

innovations and learning may be important features to capture in investment models, and that Tobin’s q

may be a particularly effective proxy for investment opportunities in R&D industries. Most importantly, as

research-intensive firms are a growing segment of the economy, the future of the investment-q relationship

looks increasingly bright.
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Appendix A.

Appendix A.1. Aggregate data from NIPA tables and Flow of Funds

This section provides details behind the calculations of aggregate investment and Tobin’s q.

Investment. The numerator of the investment rate is private nonresidential fixed investment, seasonally-
adjusted at annual rates (row 2 of NIPA table 5.3.5). The denominator is the net capital stock, measured
as the current-cost net stock of private nonresidential fixed assets (row 4 of table 1.1 of the BEA Fixed
Asset Accounts Tables). Both investment and capital stock are deflated using the price index for private
nonresidential fixed investment (row 2 of NIPA table 5.3.4). The capital stock is recorded only in the last
quarter of each year, so we smooth these year-end values linearly to the other quarters of the year. The
denominator of the investment rate is lagged by one quarter.

Note that private nonresidential fixed assets were redefined in 2013 to include intellectual property (IP)
products. Investment in IP products is recorded in row 16 of table 5.3.5, and the current-cost net stock of
IP products is recorded in row 7 of table 1.1. For comparison with older definitions, in Figures B.22 and
B.23 in the online Internet Appendix we repeat the analysis of Figures 1 and 2 after subtracting out these
series from the investment and capital stock.

Tobin’s q. These calculations follow Hall (2001). The numerator of Tobin’s q is the aggregate market
value of corporate equity and corporate debt, minus corporate inventories. Aggregate market equity is series
FL103164103 from the Fed’s Flow of Funds website (note that this series was previously labeled FL103164003
until mid-2010). Aggregate corporate debt is measured as financial liabilities (series FL104190005Q), minus
financial assets (series FL104090005Q), plus the market value of outstanding bonds, minus the book value of
outstanding bonds. The book value of outstanding bonds is the sum of the outstanding amounts of taxable
corporate bonds (series FL103163003Q) and tax-exempt corporate bonds (series FL103162000Q). Inventories
are measured with private nonfarm inventories located in row 3 of NIPA Table 5.8.5.

The market value of bonds is calculated according to an algorithm employed in Hall (2001): Corporate
bonds are assumed to be issued with ten-year maturities at a yield taken from a broad index (for taxable
bonds, the BAA yield reported by Moody’s; for tax-exempt bonds, the muni bond yields reported in the
Federal Reserve’s Table H.15). Market values are then recalculated for each vintage of bonds in each year by
discounting their remaining scheduled payments at the then-prevailing yield, so that the market and book
values of any vintage of bonds diverge after the issuance date.

The denominator of Tobin’s q is the replacement cost of the corporate capital stock. This series is
initialized in 1952 at the NIPA real net stock of private nonresidential fixed assets, then measured in later
quarters by capitalizing real gross corporate fixed investment (series FU105013005) at an annual depreciation
rate of 10%. Investment is deflated using the same NIPA deflator as above. As in Hall (2001), the replacement
cost is then reinflated using the same deflator, to be consistent with the numerator of Tobin’s q which is
measured in nominal terms.

Appendix A.2. Proof of Proposition 1 and of Corollary 1.1

The observable variables are the cash-flow process (16) and the signal (18). The unobservable variable is
µt. Write the dynamics of the observable variables θt and st:[

dθt
dst

]
=

([
−λθt

0

]
︸ ︷︷ ︸

A0

+

[
λ
0

]
︸︷︷︸
A1

µt

)
dt+

[
0
1

]
︸︷︷︸
B1

dWµ
t +

[
σθ 0
0 1√

Φ

]
︸ ︷︷ ︸

B2

[
dW θ

t

dW s
t

]
, (Appendix A.1)

and of the unobservable variable µt:

dµt = ( ηµ̄︸︷︷︸
a0

+ (−η)︸ ︷︷ ︸
a1

µt)dt+ σµ︸︷︷︸
b1

dWµ
t +

[
0 0

]︸ ︷︷ ︸
b2

[
dW θ

t

dW s
t

]
. (Appendix A.2)

We will apply the following standard theorem.
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Theorem 1. (Theorem 12.7, page 36 of Liptser and Shiryaev, 2001) Consider an unobservable process ut
and an observable process st with dynamics given by

dut = [a0(t, st) + a1(t, st)ut] dt+ b1(t, st)dZ
u
t + b2(t, st)dZ

s
t (Appendix A.3)

dst = [A0(t, st) +A1(t, st)ut] dt+B1(t, st)dZ
u
t +B2(t, st)dZ

s
t . (Appendix A.4)

All the parameters can be functions of time and of the observable process. The posterior mean (the filter) and
the posterior variance (the Bayesian uncertainty) evolve according to (we drop the dependence of coefficients
on t and st for notational convenience):

dût = (a0 + a1ût)dt+ [(b ◦B) + ζtA
>
1 ](B ◦B)−1[dst − (A0 +A1ût)dt] (Appendix A.5)

dζt
dt

= a1ζt + ζta
>
1 + (b ◦ b)− [(b ◦B) + ζtA

>
1 ](B ◦B)−1[(b ◦B) + ζtA

>
1 ]>, (Appendix A.6)

where

b ◦ b = b1b
>
1 + b2b

>
2 (Appendix A.7)

B ◦B = B1B
>
1 +B2B

>
2 (Appendix A.8)

b ◦B = b1B
>
1 + b2B

>
2 . (Appendix A.9)

In our setup, we obtain

b ◦ b = σ2
µ, B ◦B =

[
σ2
θ 0

0 Φ+1
Φ

]
, b ◦B =

[
0 σµ

]
, (Appendix A.10)

and

[(b ◦B) + ζtA
>
1 ](B ◦B)−1 =

[
λζt
σ2
θ

σµΦ
1+Φ

]
. (Appendix A.11)

This yields

dµ̂t = η(µ̄− µ̂t)dt+
[
λ
σ2
θ
ζt σµ

Φ
1+Φ

] [
dθt − λ(µ̂t − θt)dt

dst

]
. (Appendix A.12)

Equation (21) of Proposition 1 results directly from (Appendix A.6):

dζt
dt

=
σ2
µ

1 + Φ
− 2ηζt −

λ2ζ2
t

σ2
θ

. (Appendix A.13)

This deterministic process has the following steady-state solution

ζ̄ =
σ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (Appendix A.14)

The (observable) process θ can be written in two ways:

dθt = λ(µt − θt)dt+ σθdW
θ
t (Appendix A.15)

dθt = λ(µ̂t − θt)dt+ σθdŴ
θ
t . (Appendix A.16)

The first equation is written under the physical (true) probability measure. The second equation is writ-

ten under the filtration of the firm, and Ŵ θ
t is a standard Brownian motion under this filtration. In-

tuitively, the second equation shows how the firm interprets the dynamics of the observable process θ.
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From (Appendix A.16), we obtain:

dθt − λ(µ̂t − θt)dt = σθdŴ
θ
t . (Appendix A.17)

Furthermore, we can write the signal as

dst = dWµ
t +

1√
Φ
dW s

t =

√
Φ + 1

Φ
dŴ s

t , (Appendix A.18)

where Ŵ s
t is a standard Brownian motion independent of Ŵ θ

t . This yields equation (20) in Proposition 1:

dµ̂t = η(µ̄− µ̂t)dt+
[
λ
σθ
ζt σµ

√
Φ

1+Φ

] [dŴ θ
t

dŴ s
t

]
. (Appendix A.19)

The cash-flow shocks dŴ θ
t result from (Appendix A.15)-(Appendix A.16):

dŴ θ
t = dW θ

t +
λ

σθ
(µt − µ̂t)dt, (Appendix A.20)

and the information shocks dŴ s
t result from (Appendix A.18):

dŴ s
t =

√
Φ

1 + Φ
dst. (Appendix A.21)

This completes Proposition 1. After replacement of (Appendix A.14) in (Appendix A.19), we obtain

dµ̂t = η(µ̄− µ̂t)dt+
σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
dŴ θ

t + σµ

√
Φ

1 + Φ
dŴ s

t , (Appendix A.22)

and thus the instantaneous variance of the filter µ̂t is

Vart[dµ̂t] = σ2
µ −

2ησ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
(Appendix A.23)

= σ2
µ − 2ηζ̄. (Appendix A.24)

We can then compute

∂Vart[dµ̂t]

∂σµ
= 2σµ

1− ησθ

(1 + Φ)

√
η2σ2

θ +
λ2σ2

µ

1+Φ

 > 0 (Appendix A.25)

and

∂Vart[dµ̂t]

∂Φ
=

ησθσ
2
µ

(1 + Φ)2

√
η2σ2

θ +
λ2σ2

µ

1+Φ

> 0, (Appendix A.26)

which yields Corollary 1.1. �
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Appendix A.3. Discretization used for simulations

Appendix A.3.1. Model with innovation jumps

For the model of Section 3.2, the following two processes have to be simulated:

dθt = λ(µ̄− θt)dt+ σθdW
θ
t + JdNt (Appendix A.27)

dνt = −κνtdt+ σνdW
ν
t . (Appendix A.28)

We implement the following discretization scheme:

θt+∆t = θte
−λ∆t + µ̄

(
1− e−λ∆t

)
+ σθ

√
1− e−2λ∆t

2λ
εθt + JN∆t (Appendix A.29)

νt+∆t = νte
−κ∆t + σν

√
1− e−2κ∆t

2κ
ενt , (Appendix A.30)

where εθt and ενt are i.i.d. standard normal variables, εθt , ε
ν
t ∼ N (0, 1), and N∆t is a Poisson random variable

with parameter h(Φ)∆t. Due to the presence of jumps, we simulate the two processes at a high frequency
(daily), then we sample data points at yearly frequency in order to build Figure 5.

Appendix A.3.2. Model with learning

The process for the shock to the purchase price of capital, which is the same in both models, is given
in (Appendix A.28), and its discretization is provided in (Appendix A.30). Two remaining processes have
to be simulated under the filtration of the firm:

dθt = λ(µ̂t − θt)dt+ σθdŴ
θ
t (Appendix A.31)

dµ̂t = η(µ̄− µ̂t)dt+ ΩdŴ θ
t + σµ

√
Φ

1 + Φ
dŴ s

t , (Appendix A.32)

where we define

Ω ≡ σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (Appendix A.33)

We implement the following discretization of (Appendix A.31)-(Appendix A.32):

θt+∆t = θte
−λ∆t + µ̂t

(
1− e−λ∆t

)
+ σθ

√
1− e−2λ∆t

2λ
εθt (Appendix A.34)

µ̂t+∆t = µ̂te
−η∆t + µ̄

(
1− e−η∆t

)
+

√
1− e−2η∆t

2η

(
Ωεθt + σµ

√
Φ

1 + Φ
εst

)
, (Appendix A.35)

where εst is an i.i.d. standard normal variable, εst ∼ N (0, 1), independent of εθt and ενt . We simulate these
two processes at yearly frequency.

Appendix A.3.3. Simulations

Once we have simulated the above time series, we compute q(xt) for each point in the state space, where
xt = {θt, νt} in the model with innovations and xt = {θt, µ̂t, νt} in the model with learning. Then we use the
first-order condition for investment, which is given in equation (14) or (25), to compute the investment-capital
ratio for each simulated point,

It
Kt

= −1

a
+

1

a
q(xt)−

1

a
νt. (Appendix A.36)

This provides all the data necessary for the plots.
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