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Abstract

In a production economy, uncertainty and learning about persistence generates

counter-cyclical consumption volatility. When the persistence of productivity is unob-

servable, consumption responds differently to long-run productivity shocks, depending

on the state of the economy. In bad economic times, a negative shock prompts agents

to extrapolate that productivity becomes more persistent, which reinforces consump-

tion’s response to bad news. The opposite extrapolation occurs in good times, when

productivity becomes less persistent after a negative shock, partially offsetting the

bad news. This asymmetric response to productivity shocks amplifies the volatility of

consumption in bad times, but attenuates it in good times. In contrast, other types

of learning generate constant or procyclical volatility of consumption, at odds with

empirical evidence.
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CANADA; +1 (514) 589-6699; alexandre.jeanneret@hec.ca; alexandrejeanneret.com.

http://danielandrei.info
http://www.steffenhitzemann.com
http://www.alexandrejeanneret.com


1 Introduction

Standard asset pricing theory predicts that assets that covary positively with consumption

should earn a positive risk premium. This compensation for risk depends on the level of con-

sumption uncertainty, which is often assumed to be constant. However, empirical evidence

suggests that consumption volatility varies over time and, in particular, becomes higher dur-

ing recessions.1 Countercyclical volatility of consumption should then provide an additional

risk premium, as investors dislike assets that pay poorly not only when their marginal utility

of consumption is low but also when consumption becomes more uncertain.

Based on this intuition, consumption volatility risk has recently attracted much interest

among economists and is now viewed as an important ingredient for asset pricing. For

instance, Bansal and Yaron (2004) show that fluctuations in consumption volatility generate

a time-varying and countercyclical risk premium.2 Moreover, this channel is important for

understanding the negative relation between returns and return volatility, also known as the

volatility feedback effect (French, Schwert, and Stambaugh, 1987; Campbell and Hentschel,

1992). In addition, the exposure to fluctuating consumption volatility explains the cross

section of stock returns (Boguth and Kuehn, 2013; Bansal, Kiku, Shaliastovich, and Yaron,

2014; Tédongap, 2015). It is therefore crucial to understand the fundamental mechanism

behind consumption volatility risk. Our paper takes one step in this direction.

We show that countercyclical consumption volatility can arise endogenously in a general

equilibrium production economy with incomplete information. The economy is populated by

a representative agent with Epstein and Zin (1989) lifetime utility function and a preference

for early resolution of uncertainty (Bansal and Yaron, 2004). In this economy, the produc-

tivity is mean-reverting and observable, but the agent has incomplete information about

its persistence. That is, the agent observes the level of productivity but does not know its

mean-reverting speed. We derive the equilibrium implications of this learning exercise and

show that it generates time-varying and countercyclical consumption volatility.

The mechanism behind this prediction becomes clear when we disentangle good eco-

nomic times (i.e., times during which the productivity is above its long-run mean) from bad

economic times. In good times, a positive productivity shock has two opposing effects on

consumption. First, higher productivity means better investment opportunities, which in-

duces the agent to invest more and thus to reduce today’s consumption.3 Second, the agent

1See, for example, Kandel and Stambaugh (1990), Kim and Nelson (1999), Bansal and Yaron (2004),
Bansal, Khatchatrian, and Yaron (2005), Boguth and Kuehn (2013), and Bekaert and Engstrom (2015).

2Bansal and Yaron (2004) show that both the persistence in the consumption growth rate and in the
volatility of consumption growth are necessary to replicate key asset pricing moments. See also Bansal,
Kiku, and Yaron (2012) and Beeler and Campbell (2012).

3We assume that the parameters of relative risk aversion (RRA) and of intertemporal elasticity of sub-
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uses this new information to update her estimate of the persistence parameter; the positive

productivity shock then becomes bad news, as the agent now extrapolates that productivity

is more persistent, a feature which she dislikes given the preference for early resolution of

uncertainty. These two forces partially offset each other, thereby dampening fluctuations in

consumption. As a consequence, we observe a low level of consumption volatility in good

times. In contrast, a positive productivity shock in bad times is always perceived as good

news: the agent becomes wealthier and, furthermore, extrapolates that the economy is recov-

ering faster, which implies less persistent productivity. Both forces influence consumption in

the same direction, thus yielding a high level of consumption volatility in bad times. Given

this, learning about persistence creates an asymmetry in consumption volatility.

This countercyclicality does not arise in a model where the agent learns about the level

of productivity (Ai, 2010) instead of its persistence. To demonstrate this, we build a model

which nests both alternatives and thus allows us to show that only uncertainty about the

degree of persistence is able to generate countercyclical consumption volatility. Instead,

learning about the level of productivity growth helps better match asset pricing moments,

in comparison to an economy with perfect information, but implies no variation or even

procyclical consumption volatility, at odds with the data. This key difference arises because

uncertainty about the level of productivity impacts the sensitivity of consumption to short-

run shocks, whereas uncertainty about its persistence impacts the sensitivity of consumption

to long-run shocks. This also emphasizes the importance of long-run productivity shocks for

macroeconomics and finance considerations (Favilukis and Lin, 2013; Croce, 2014).

The properties of consumption volatility that we generate endogenously from the learning

process have several critical implications. First, the persistence in productivity translates

into a persistent conditional consumption volatility in equilibrium. Because the volatility of

asset returns is a linear affine function of the conditional variance of consumption growth

(Bansal and Yaron, 2004), the model would help explain the autoregressive property of mar-

ket return volatility, as demonstrated by the (G)ARCH processes (Engle, 1982; Bollerslev,

1986). Second, this relation implies that both market return volatility and the equity risk

premium rise during recessions, consistent with empirical evidence (Fama and French, 1989;

Schwert, 1989).4 Finally, time-variation in consumption volatility also plays a key role in the

pricing of corporate claims and in capital structure decisions, which thereby contribute to

stitution (IES) are higher than one. With an IES higher than one, the intertemporal substitution effect
dominates the income effect, which implies that the agent consumes a lower proportion of her wealth when
the expected return on the technology increases (Ai, 2010).

4This would also help explain why expected market volatility rises when economic conditions deteriorates,
as highlighted with the CBOEs VIX index. The rationale is that the VIX is positively related with the market
return volatility, and thus with consumption volatility, in addition to containing a variance risk premium
(Carr and Wu, 2009; Bollerslev, Gibson, and Zhou, 2011).
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solving the credit spread puzzle (Bhamra, Kuehn, and Strebulaev, 2010; Chen, 2010). Our

theory thus provides a fundamental explanation for the dynamics of consumption, which has

been shown to help explain several salient observations in finance.

This paper is related to several strands of literature. First, our approach builds on the

growing literature analyzing equilibrium conditions and asset-price properties in production-

based economies. The most closely related paper to ours is Ai (2010), who describes the

effect of learning on the unconditional moments of the wealth-consumption ratio and of the

return on aggregate wealth. Our paper focuses on conditional moments and shows that

fluctuations in consumption volatility arise endogenously from learning about persistence of

productivity, rather than about its level. Hirshleifer, Li, and Yu (2015) analyze extrapola-

tive expectations about productivity growth. They focus on the unconditional moments of

consumption and show that consumption growth becomes more predictable and volatile if

one assumes a greater extrapolative bias. The contribution of our paper is to show that

agents form extrapolative expectations rationally when updating their beliefs and that this

behavior yields time-variation in consumption volatility.5

Second, our analysis of the asset pricing implications builds on the literature analyzing

the role of consumption volatility as an exogenous source of risk. Bansal et al. (2005) find

that time-varying consumption volatility predicts aggregate asset valuation ratios, which is

then confirmed by Lettau, Ludvigson, and Wachter (2008). Bansal and Yaron (2004) demon-

strate that both long-run risk and fluctuations in consumption volatility help match key asset

pricing moments with a reasonable parameterization of recursive preferences. Boguth and

Kuehn (2013) and Tédongap (2015) suggest that the volatility of consumption growth con-

tributes to explaining individual expected stock returns, while Bekaert and Engstrom (2015)

conclude that conditional volatility, skewness, and kurtosis of consumption growth matter

for asset pricing.

Finally, our paper also relates to Kaltenbrunner and Lochstoer (2010) and Croce (2014),

who obtain long-run consumption risk endogenously in a production economy. Although our

model generates an endogenous persistence in the consumption growth rate, which arises

from learning, we focus instead on the dynamics of consumption volatility. Furthermore,

and in contrast to these papers, our results obtain without any investment friction.

The remainder of the article is organized as follows. Section 2 provides empirical evidence

5The paper also complements a recent set of studies highlighting the asset pricing implications of learn-
ing about consumption dynamics (Johannes, Lochstoer, and Mou, 2016; Collin-Dufresne, Johannes, and
Lochstoer, 2016). Another related study is Brennan and Xia (2001), which shows that learning on the level
of dividend growth rate can explain high levels of stock price volatility and equity premium. The main dif-
ference with these articles is that we explore learning about the dynamics of productivity and its endogenous
effect on consumption.
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on time-varying and countercyclical consumption volatility. Section 3 introduces the model,

while Section 4 presents the theoretical predictions. Section 5 outlines the calibration of the

model parameters and discusses the results of our numerical analysis. The final section offers

some concluding remarks.

2 Empirical Properties of Consumption Volatility

We first discuss the empirical properties of consumption volatility in the U.S. Our analysis

uses data on quarterly per capita real consumption expenditures on nondurable goods and

services from the Bureau of Economic Analysis. We examine the 1950Q1-2015Q4 period,

based on the observation that U.S. consumption behaved quite specifically in the first years

following World War II (Yogo, 2006; Lettau et al., 2008; Boguth and Kuehn, 2013). For

comparison, we also report results using annual consumption data from 1929 until 2015.

We first display the conditional volatility of consumption growth, which we estimate using

a GARCH(1,1) model.6 Figure 1 (top panel) shows that conditional consumption volatility

presents persistence and fluctuates over time at the business cycle frequency. Furthermore,

consumption volatility appears to be countercyclical, as it tends to increase in bad times and

to decrease in good times.

We demonstrate this pattern in two different ways. First, consumption volatility tends to

be higher during official NBER recessions than during normal times. The average conditional

annualized volatility is respectively 1.32% and 1.07%, as reported in Table 1 (Panel A).

Second, we compare the levels of consumption volatility across different states of the

economy estimated directly from the consumption dynamics. We thus exploit business cycle

information that likely differs from the NBER classification of recession/expansion periods.

Specifically, we estimate a Markov regime-switching model with two regimes on U.S. con-

sumption growth. The transition probability matrix is obtained by maximum likelihood

using the Hamilton (1989)’s approach. The middle and bottom panels of Figure 1 indicate

that consumption volatility increases (decreases) with the probability of being in bad (good)

economic times. We find that the average consumption volatility is respectively 1.57% and

0.66% during the bad and the good state (see Table 1, Panel B). The conclusion of our anal-

ysis remains qualitatively similar, although quantitatively amplified, if we instead consider

annual consumption data over the 1929-2015 period (see Table 1).

Overall, these results provide empirical support that consumption volatility is counter-

cyclical and that it presents an asymmetry that strongly depends on the state of the economy.

We now propose a theory that will help us understand these empirical observations.

6Data are first demeaned to remove MA(1) variation in the conditional mean of consumption growth.
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Figure 1: Conditional variation in consumption volatility. The top panel displays the

time-variation in conditional consumption volatility in the U.S., estimated with a GARCH(1,1).

The middle panel reports the probability of being in bad economic times, estimated with a two-

state Markov-regime switching model (Hamilton, 1989). The bottom panel presents the relation

between conditional consumption volatility and the probability of being in good economic times.

We use data on real non-durables goods plus service consumption expenditures over the period

1950Q1-2015Q4 from the Bureau of Economic Analysis.

3 Model

3.1 Economic Environment

Consider an economy populated by a representative agent, who derives utility from con-

sumption. The agent has stochastic differential utility with subjective time preference rate

β, relative risk aversion γ, and elasticity of intertemporal substitution ψ. The indirect utility
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Table 1: Conditional moments of consumption volatility This table reports the conditional
moments of consumption volatility in the U.S. Panel A uses official NBER dates to characterize pe-
riods of expansions and recessions, whereas Panel B considers a two-state Markov-regime switching
model based on Hamilton (1989). For each method, we consider quarterly consumption data over
the period 1950Q1-2015Q4 and annual consumption data over the period 1929-2015. We measure
consumption using data on real non-durables goods plus service consumption expenditures from
the Bureau of Economic Analysis.

Recession
(1)

Expansion
(2)

(1) - (2)

Panel A : NBER classification

Quarterly data (1950Q1-2015Q4)

Consumption volatility (%) 1.323 1.069 0.254

Frequency 0.164 0.836

Annual data (1929-2015)

Consumption volatility (%) 3.349 1.592 1.757

Frequency 0.164 0.836

Panel B : Markov-regime switching model

Quarterly data (1950Q1-2015Q4)

Consumption volatility (%) 1.566 0.660 0.906

Frequency 0.443 0.557

Annual data (1929-2015)

Consumption volatility (%) 4.313 1.208 3.105

Frequency 0.145 0.855

function is given by

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
, (1)

where the aggregator f writes (Campbell, Chacko, Rodriguez, and Viceira, 2004):

f(C, J) = β
1− γ
1− 1

ψ

J

( C

((1− γ)J)
1

1−γ

)1− 1
ψ

− 1

 . (2)
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In this economy, the capital, Kt, and the productivity, at, evolve according to:

dKt = Kt {[at + (1− θ)π]dt+ σKdBK,t} − Ctdt (3)

dat = [θλ+ (1− θ)λ̄](ā− at)dt+ σadBa,t, (4)

where we assume, for simplicity, that the two Brownians in (3)-(4) are uncorrelated. Consid-

ering a non-zero correlation between these two Brownians would make the notation heavier

without changing the main message of the paper.

The agent observes the system (3)-(4) but has only limited information about the con-

stants π and λ. All other parameters are known. If the parameter θ is either 0 or 1, only

one of two constants remains unobservable. In the case θ = 0, the agent knows the mean-

reverting speed of the productivity, λ̄, but does not know its overall level, at + π (we call

this case learning about level). By contrast, the case θ = 1 indicates that the agent perfectly

observes the level of productivity, at, but does not know its mean-reversion speed, λ (we call

this case learning about persistence).7 As such, the parameter θ defines the learning exercise

of the representative agent.

Although the main focus of our paper is on the case of learning about persistence (θ = 1),

we keep the parameter θ for expositional purposes. This allows us to clearly distinguish

between the different equilibrium implications of learning about the level versus learning

about the persistence of productivity.

3.2 Learning

We now explain how the representative agent updates her beliefs about each of the two

parameters, using the information provided by the different types of shocks. The agent

starts with the following priors about π and λ:

π ∼ N (0, νπ,0) (5)

λ ∼ N (λ̄, νλ,0). (6)

There is no correlation between these two priors (i.e., νπλ,0 = 0). The value of θ affects

neither the agent’s prior about the long-term level of productivity, which always equals ā,

nor the agent’s prior about the mean-reverting speed of productivity, which always equals

7In fact, within our model, the parameter θ can take any value between 0 and 1, in which case the agent
learns simultaneously about level and persistence. Intuitively, if the parameter θ approaches 0, the agent is
more concerned with learning about the level of productivity, whereas she rather focuses on learning about
persistence when the parameter θ approaches 1. A worthwhile research question is to use macroeconomic
and asset price data to structurally estimate the parameter θ.
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λ̄. That is, starting with a θ of zero or one generates exactly the same priors; the only

difference is that in one case the agent learns about the level, whereas in the other case the

agent learns about persistence.

Let us denote by π̂t ≡ E[π|Ft] the estimated parameter π and its posterior variance by

νπ,t ≡ E[(π−π̂t)2|Ft]. Similarly, let us denote by λ̂t ≡ E[λ|Ft] the estimated parameter λ and

its posterior variance by νλ,t ≡ E[(λ − λ̂t)2|Ft]. The estimates and the posterior variances

are such that

π ∼ N(π̂t, νπ,t) (7)

λ ∼ N(λ̂t, νλ,t), (8)

where N(m, v) denotes the Normal distribution with mean m and variance v. Henceforth,

we refer to either of the two estimated predictive coefficients π̂t and λ̂t as the filter and to

either of the two posterior variances νπ,t and νλ,t as the uncertainty. Note that learning is

standard in our setup (Liptser and Shiryayev, 1977) and the reader can refer to Appendix

A for the technical details.

The filters evolve according to[
dπ̂

dλ̂

]
=

[
(1−θ)νπ,t

σK
0

0
θ(ā−at)νλ,t

σa

][
dB̂K,t

dB̂a,t

]
, (9)

where dB̂K,t and dB̂a,t are independent Brownian motions coming from the filtration of the

agent. We define these Brownian motions in Appendix A. One can observe from (9) that

the agent does not update λ if θ = 0 and thus sticks with the prior λ̄ as the mean-reverting

speed. If θ = 1, the agent does not learn about π and thus maintains the prior ā as the

long-term productivity in the economy.

The agent’s estimate of π and the capital K are perfectly and positively correlated. As

a result, the agent’s expectation formation is “extrapolative”, as in Brennan (1998): when

capital increases, the agent revises her estimate upwards; when capital decreases, she revises

her estimate downward. This extrapolative expectation formation is also valid when learning

about λ, but the effect now depends on the state of the economy, which is characterized by

the difference ā−at. In good times, when ā−at < 0, any positive productivity shock decreases

the agent’s estimate of λ, whereas in bad times, when ā− at > 0, any negative productivity

shock decreases the agent’s estimate of λ. Both situations (i.e., positive shocks in good

times or negative shocks in bad times) induce the agent to extrapolate that productivity

becomes more persistent. As we will show in the next section, this extrapolative expectation

8



formation plays a critical role in the agent’s optimal consumption decision.8

The Bayesian uncertainties about π and λ evolve according to

dνπ,t = −
(1− θ)2ν2

π,t

σ2
K

dt (10)

dνλ,t = −
θ2(ā− at)2ν2

λ,t

σ2
a

dt. (11)

Because the agent is learning about constants, both uncertainties converge to zero. It is

easy to generate positive steady-state uncertainties by assuming that learning is regenerated,

i.e., that π and λ are not constants but rather move over time. Yet this would unnecessarily

complicate the setup without affecting our qualitative implications.9

The uncertainty about π has a closed-form solution and is a deterministic function of

time:

νπ,t =
1

(1−θ)2
σ2
K
t+ 1

νπ,0

, (12)

where the term (1−θ)2/σ2
K represents the speed of learning, which decreases with θ and σK .

If we consider time t = 0, we obtain the prior νπ,0. Although there is no straightforward

solution for the uncertainty about λ because of the (ā−at) term in (11), it is clear, however,

that this uncertainty also decreases with time. Notably, the convergence to zero is quicker

when at is away from ā, as news become more informative. The agent thus learns faster in

either very good or very bad times, in comparison to productivity being close to its long-term

mean. To see it differently, new observations that are further away from a regression line are

more informative about the slope coefficient.

To summarize, the dynamics of the capital and other state variables generated by this

learning exercise are given respectively by

dKt = Kt

{
[at + (1− θ)π̂t]dt+ σKdB̂K,t

}
− Ctdt (13)

dat = [θλ̂+ (1− θ)λ̄](ā− at)dt+ σadB̂a,t (14)

8The extrapolative nature of learning is different from the “extrapolation bias,” a pervasive phenomenon
in human judgement and decisions. Extrapolation bias refers to the tendency to overweight recent events
when making decisions about the future. In our case, the agent does not overweight recent events, but applies
standard Bayesian updating rules. See Hirshleifer et al. (2015) for a rigorous analysis of extrapolation bias
in a production economy.

9Collin-Dufresne et al. (2016) show that parameter learning—even about a constant—is important when
the representative agent has a preference for early resolution of uncertainty, which will be the case in our
setup.
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and Equations (9), (10), and (11).

3.3 Equilibrium

The equilibrium is standard and thus technical details are relegated to Appendix B. In this

economy, solving for equilibrium involves writing the HJB-equation for problem (1) as

max
C
{f(C, J) + LJ} = 0, (15)

with the differential operator LJ following from Itô’s lemma, and defined in Equation (52)

of Appendix B. We then obtain from (15) the first order condition for consumption:

C = βψJ−ψK [(1− γ)J ]
1−γψ
1−γ , (16)

which we insert into the HJB-equation (52) and guess the following form for the value

function:

J(K, a, π̂, λ̂, νπ, νλ) =
K1−γ

1− γ
βφx(a, π̂, λ̂, νπ, νλ)

− 1−γ
1−ψ , (17)

where φ is a constant defined as φ ≡ 1−γ
1−1/ψ

. This constant equals one in the CRRA case

and is lower than one when γ > 1 > 1/ψ. The function x(a, π̂, λ̂, νπ, νλ) represents the

wealth-consumption ratio in the economy:

x(a, π̂, λ̂, νπ, νλ) =
K

C
. (18)

The HJB (52) can then be written in terms of the wealth-consumption ratio x to obtain

the partial differential equation (56) in Appendix B. We solve this equation in two special

cases: θ = 0 (stated in Equation (59) of Appendix B.1) and θ = 1 (stated in Equation (60)

of Appendix B.2). In each one fo these two cases, the partial differential equation is solved

using Chebyshev polynomials (Judd, 1998).

4 Theoretical Predictions

This section presents and discusses the main predictions of the paper. We show that produc-

tivity shocks prompt the agent to extrapolate about the perceived persistence of productivity.

This endogenous response reduces consumption volatility in good times but increases it in

bad times. Hence, consumption volatility becomes countercyclical, consistent with the em-
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pirical evidence of Section 2. We contrast this result with the case of learning about level,

which can potentially yield procyclical volatility of consumption.

4.1 Consumption Dynamics

To understand how learning affects consumption volatility, it is useful to first analyze the

endogenous dynamics of consumption in our economy. Starting from (18), the consumption

evolves according to:

dCt
Ct

= µCt dt+
[
σCK,t σCa,t

] [dB̂K,t

dB̂a,t

]
, (19)

with the diffusion terms σCK,t and σCa,t satisfying

σCK,t ≡ σK − (1− θ)νπ,t
σK

xπ̂
x

(20)

σCa,t ≡ −σa
xa
x
− θ (ā− at)νλ,t

σa

xλ̂
x
, (21)

where xy denotes the partial derivative of the wealth-consumption ratio with respect to the

state variable y.

Our focus is on the impact of learning on the volatility of consumption.10 The two

diffusion terms in (20) and (21) are primarily driven by three state variables: the level

of productivity at, the uncertainty about the level of productivity νπ,t, and the uncertainty

about the mean-reversion speed νλ,t. Based on these diffusion terms, our model indicates that

these two types of learning affect the volatility of consumption differently. On the one hand, if

the agent learns about the level of productivity (θ = 0), (20) is affected by uncertainty about

π, while (21) is not. On the other hand, if the agent learns about persistence (θ = 1), only

(21) depends on the uncertainty about λ. Thus, an important conclusion is that uncertainty

about the level of productivity affects consumption’s response to short-run shocks dB̂K ,

whereas uncertainty about the persistence of productivity affects consumption’s response to

long-run shocks dB̂a.

Note that these relations depend on the wealth-consumption ratio terms xa/x, xπ̂/x, and

xλ̂/x. We now discuss the signs of these terms, which will be useful to understand the overall

impact of the state variables on the volatility of consumption.

When the agent has relative risk aversion γ and intertemporal elasticity of substitu-

tion ψ higher than one, the wealth-consumption increases with good news about either the

10See Appendix B, Equation (58), for the drift of consumption, which has been analyzed in detail by
Kaltenbrunner and Lochstoer (2010) in production economies.
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transitory component or the long-run level of productivity. Intuitively, this prediction arises

because the intertemporal substitution effect dominates the income effect, which implies that

the agent consumes a lower proportion of her wealth as she becomes wealthier (Ai, 2010).

Hence, we have that xa/x > 0 and xπ̂/x > 0. In addition, the agent has preference for early

resolution of uncertainty and thus dislikes long-run risk (Bansal and Yaron, 2004), which is

captured by a lower persistence parameter λ̂. The wealth-consumption is then increasing in

λ̂, which yields xλ̂/x > 0.11 To summarize, preferences satisfying γ > 1 > 1/ψ imply that

xa/x > 0, xπ̂/x > 0, xλ̂/x > 0. (22)

We now analyze each form of learning in detail and compare their implications for con-

sumption volatility.

4.2 Learning about level

When the representative agent learns about the level of productivity, uncertainty about π

affects consumption’s response to short-run shocks and decreases the diffusion term σCK,t,

as it can be seen from (20). This type of learning decreases the volatility of consumption,

as noted by Ai (2010). Intuitively, a positive capital shock, dB̂K,t > 0, makes the agent

wealthier, which allows her to increase consumption. At the same time, the agent uses this

innovation to update her estimate about the level of productivity. She now believes that

the expected return on the technology becomes higher, which encourages her to invest more

in order to increase future consumption. As these forces offset each other, the presence

of learning therefore creates an intertemporal substitution effect that reduces the response

of consumption to capital shocks when the IES is higher than one.12 As highlighted in

Ai (2010), learning about the level of productivity therefore decreases the consumption’s

response to short-run shocks and hence its volatility.

11These conclusions can be reached by starting directly from the specification of the value function (17):
when γ > 1 > 1/ψ, the value function is increasing in the wealth-consumption ratio. Furthermore, we know
that the agent prefers higher a and higher π̂ (due to non-satiation, expected lifetime utility must rise as
investment opportunities improve), i.e. Ja > 0 and Jπ̂ > 0. We also know that the agent prefers early
resolution of uncertainty, i.e. Jλ̂ > 0. Finally, we know that the agent dislikes uncertainty, i.e. Jνπ < 0 and
Jνλ < 0. We then obtain (22).

12Note that the second effect can actually become stronger than the first effect, leading to a decrease in
consumption after a positive capital shock.
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4.3 Learning about persistence

Learning about persistence impacts consumption’s response to long-run shocks. This impact

arises asymmetrically through the presence of the difference ā − at in σCa,t, as indicated

in (21). Current economic conditions thus determine whether learning attenuates or rather

amplifies the direct effect of productivity shocks on consumption. To understand the role

of this asymmetry, we examine how consumption responds to a positive productivity shock,

dB̂a,t > 0, by comparing good and bad economic times.

Productivity at above long-term mean, at > ā. In good economic times, a positive

productivity shock increases at but decreases λ̂t. This second effect arises because learning

is extrapolative—the agent believes that good times will last longer. The increase in produc-

tivity increases the wealth-consumption ratio, whereas the decrease in the filter λ̂ reduces

this ratio. Hence, consumption decreases with the first term through a, but increases with

the second term through λ̂, as illustrated below:

σCa,t = −σa
xa
x︸ ︷︷ ︸

Increase in a (−)

−θ (ā− at)νλ,t
σa

xλ
x︸ ︷︷ ︸

Decrease in λ̂ (+)

(23)

In other words, a positive productivity shock in good times is good news because of

higher productivity (increase in a), but is bad news because it also implies more persistence

(decrease in λ̂). Because these two forces have opposing effects on consumption, fluctua-

tions in consumption are dampened in good times, resulting in relatively low consumption

volatility.

Productivity at below long-term mean, at < ā. In bad economic times, a positive

productivity shock increases both at and λ̂t. The increase in the filter arises again be-

cause of learning—with a positive shock, the agent believes that the economy is recovering

faster. Hence, the increase in both productivity a and the filter λ̂ lead to a higher wealth-

consumption ratio and to lower consumption, as we illustrate below

σCa,t = −σa
xa
x︸ ︷︷ ︸

Increase in a (−)

−θ (ā− at)νλ,t
σa

xλ
x︸ ︷︷ ︸

Increase in λ̂ (−)

(24)

Hence, a positive productivity shock in bad times is good news because of higher pro-

ductivity (increase in a), and is also good news because it implies less persistence (increase

in λ̂). Thus, consumption goes down in both cases. These shocks therefore work together to
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increase the volatility of consumption in bad times.13

Overall, news about productivity, or long-run news, have two effects on consumption. The

first effect is that higher productivity stimulates investment and decreases consumption. It

increases the opportunity cost of consumption and, when the substitution effect dominates

the income effect, the agent decides to invest more and to consume less today. Importantly,

the sign of this effect does not vary with the state of the economy (i.e., whether the economy

is in good or bad times), but only depends on the parameters of the utility function.

The second effect depends on the state of the economy, thereby introducing an asymmetry

in consumption’s response to productivity shocks. This arises because the agent prefers early

resolution of uncertainty and thus dislikes persistence in the productivity. If the economy is in

good times, a positive productivity shock signals more persistence—the agent then chooses

to decrease investment and to consume more; if the economy is in bad times, a positive

productivity shock signals less persistence—the agent then chooses to increase investment

and to consume less.

These two effects have opposing signs in good times, but the same sign in bad times.

Because consumption becomes more sensitive to long-run productivity shocks in bad times,

this asymmetry generates countercyclical consumption volatility.

5 Numerical Illustration

We now offer a quantitative analysis of the role of learning in consumption volatility. We

illustrate first the implications of learning about persistence. Then, we compare our findings

with the case of learning about the level of productivity (θ = 0).

5.1 Calibration

In our baseline calibration, we set preferences such that β = 0.014, γ = 3, and ψ = 1.5. The

volatility of the aggregate wealth is set to σK = 0.05. The productivity process assumes

that ā = 0.035 and σa = 0.005, as in Ai (2010). We specify the following prior distribution

for the mean-reverting parameter λ: λ̄ = 0.05 and νλ,0 = 0.000625 (in comparison Ai (2010)

chooses a mean-reverting parameter of 0.027, which is within our specified prior distribution).

Finally, regarding the parameter π, we specify a zero prior mean and νπ = σ2
a/(2λ̄) = 0.00025,

which is the unconditional variance of the productivity process at.

13The intuition for a negative productivity shock is similar: in good times the shock is not that bad,
because it signals less long-run risk; in bad times the shock is very bad, because it signals more long-run
risk.
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Figure 2: Consumption volatility with learning about productivity persistence.
The figure depicts the volatility of consumption when the agent learns about the persistence
in productivity. The left panel compares the model predictions for different values of the
estimated mean-reversion speed in productivity λ̂, while the right panel illustrates the role
of the uncertainty about this parameter, which corresponds to νλ. Consumption volatility
is reported as a function of the productivity at. Low and high productivity levels at capture
bad and good economic times, respectively. The long-term mean in productivity is given by
ā = 0.035. The calibration is discussed in Section 5.1.

5.2 Learning and Conditional Consumption Volatility

We start by analyzing the case in which θ = 1 (i.e., learning about persistence), which implies

that the wealth-consumption ratio depends on only three state variables: at, λ̂t, and νλ,t.

Figure 2 plots the instantaneous volatility of consumption as a function of productivity. The

left panel shows that a lower value of λ̂ translates into more persistence and thus increases the

volatility of consumption. In the right panel, we fix the filter λ̂ to its prior value (λ̄ = 0.05)

and vary the uncertainty about the mean-reversion speed νλ. This panel shows that the

relation between the level of consumption volatility and the uncertainty about persistence

νλ is ambiguous; it varies with the state of the economy, as determined by the level of

productivity at. With our calibration, uncertainty amplifies the volatility of consumption

in bad economic times, whereas the effect of uncertainty on the volatility of consumption is

weaker and ambiguous in good economic times.

The key implication of this numerical analysis is that consumption volatility is counter-

cyclical. In particular, we show that consumption volatility is more sensitive to long-run

productivity shocks for higher estimates of the mean-reversion speed λ̂. In addition, uncer-

tainty about persistence νλ amplifies the countercyclical property of consumption volatility.
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We now turn to learning about the level of productivity and contrast the results obtained

with learning about persistence. The effect of learning about the level of productivity arises

through the diffusion of consumption multiplying the short-run shock dB̂K , which we restate

here for convenience from Equation (20) in the case θ = 0:

σCK,t = σK︸︷︷︸
(+)

− νπ,t
σK

xπ̂
x︸ ︷︷ ︸

(+)

. (25)

Figure 3 depicts the level of consumption volatility for different values of the filter π̂ (left

panel) and for different values of the uncertainty νπ (right panel). The level of consumption

volatility decreases with the estimate of long-term productivity π̂ (left panel) and increases

with the uncertainty about the level of productivity νπ,t (right panel). Hence, learning about

the level of productivity reduces the volatility of consumption, as predicted in Ai (2010).14

Notably, we find that consumption volatility increases with the level of productivity at,

which means that it becomes procyclical in this learning environment. Although (25) does

not depend directly on the level of productivity, as it is the case with learning about persis-

tence, this diffusion term actually varies with productivity through the partial derivative of

the wealth-consumption ratio, xπ̂/x.

In conclusion, our numerical illustration depicts an important difference between learning

about persistence and learning about level. We show that learning about persistence gener-

ates countercyclical consumption volatility, whereas learning about the level of productivity

can potentially generate procyclical consumption volatility, as it is the case under our calibra-

tion. The key difference arises because learning about level impacts consumption’s response

to short-run shocks, whereas learning about persistence impacts consumption’s response to

long-run shocks. In bad economic times, uncertainty about persistence makes consumption

more sensitive to long-run productivity shocks, which in turn generates generates counter-

cyclical consumption volatility.

5.3 The relation between investment and consumption

In this section, we analyze the dynamic properties of investment and its covariance with

consumption. For the sake of brievity, we only consider the case in which the agent learns

14Note that Ai (2010) reports results using a log-linearization, and thus xπ̂/x becomes a constant in his
setup. In our case, an exponential linear approximation of the wealth-consumption ratio would also generate
a constant xπ̂/x, and thus both panels of Figure 3 would only show a single horizontal line. Furthermore,
depending on the relative magnitude of the two terms in (25), the overall diffusion term can take positive
or negative values. With our calibration, σCK,t becomes negative, but with the calibration from Ai (2010) it
stays positive.
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Figure 3: Consumption volatility with learning about productivity level. The figure
depicts the volatility of consumption when the agent learns about the level of productivity.
The left panel compares the model predictions for different estimates of long-term produc-
tivity π̂, while the right panel illustrates the role of the uncertainty about this parameter,
which corresponds to νπ. Consumption volatility is reported as a function of productivity
in our economy. Low and high productivity levels at capture bad and good economic times,
respectively. The long-term mean in productivity is given by ā = 0.035. The calibration is
discussed in Section 5.1.

about persistence (θ = 1). The optimal level of investment is given by

It = Kt[at + (1− θ)π̂t]− Ct. (26)

Applying Ito’s lemma on (26) and fixing θ = 1, we obtain the following dynamics:

dIt
It

= µI,tdt+
[
σK

1
atx−1

{
σa
(
x+ xa

x

)
+ (ā− at)νπ,tσa

x
λ̂

x

}][dB̂K,t

dB̂a,t

]
. (27)

Learning about persistence impacts the response of investment to productivity shocks,

through the second diffusion term in (27). This term is positive when ā = at.
15 Consider now

a positive productivity shock. This shock initially increases investment. If the economy is in

good times, the impact of this shock on investment is attenuated because the agent perceives

now more persistence. In contrast, the impact of this shock on investment is amplified in

bad times, because the agent perceives less persistence. Investment, therefore, becomes more

15The term atx− 1 is most of the times positive: consider for instance the productivity to be at its long-
term mean ā = 0.037 and the wealth-consumption ratio to be 87, as estimated by Lustig, Van Nieuwerburgh,
and Verdelhan (2013); this results in atx− 1 = 2.045.
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volatile in bad times.

Our model has implications for the relationship between investment and consumption,

an issue that has received attention in the literature (see, e.g., Croce, 2014). In particular,

standard RBC models produce an almost perfect correlation between investment and con-

sumption, whereas in the data this corelation is only mildly positive. In the context of our

model, when the agent learns about persistence, the magnitude of the correlation changes

with the second diffusion terms in (19) and (27), which, when θ = 1, become:

σCa,t = −σa
xa
x
− (ā− at)νλ,t

σa

xλ̂
x

(28)

σIa,t =
1

atx− 1

[
σa

(
x+

xa
x

)
+ (ā− at)

νπ,t
σa

xλ̂
x

]
. (29)

The instantaneous covariance between investment and consumption is then

Covt

[
dCt
Ct

,
dIt
It

]
= σ2

K + σCa,tσ
I
a,t. (30)

The terms σCa and σIa depend on the difference ā − at and thus on the state of the

economy. In good times, the term σCa is negative but its magnitude is dampened through

the extrapolative expectations of the agent (as described in Section 4.3), whereas the term

σIa is positive but its magnitude is dampened by the same extrapolative expectations effect.

The opposite happens in bad times, when σCa becomes strongly negative and σIa becomes

strongly positive. Given this, the second term in (30) becomes strongly negative in bad

times and thus decreases the amount of positive correlation generated by the first term. Our

model therefore generates a lower covariance between investment and consumption in bad

times, a theoretical prediction that can be tested empirically.

5.4 Pricing kernel, risk-free rate, and market prices of risk

As shown in Duffie and Epstein (1992), in an economy with recursive preferences, the state

price density, denoted {ξt}t≥0, satisfies

dξt
ξt

=
dfC(Ct, Jt)

fC(Ct, Jt)
+ fJ(Ct, Jt)dt (31)

= −rtdt− λ1dB̂K,t − λ2dB̂a,t. (32)

This allows us to compute the risk-free rate and the two market prices of risk. First, we
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know from the first order condition on consumption that

fC(Ct, Jt) = JK(Kt, a, π̂, λ̂, νπ, νλ) = K−γt β
−ψ(γ−1)
ψ−1 x(a, π̂, λ̂, νπ, νλ)

− γ−1
ψ−1 , (33)

and thus

dξt
ξt

=
dJK(Kt, a, π̂, λ̂, νπ, νλ)

JK(Kt, a, π̂, λ̂, νπ, νλ)
+ fJ(Ct, Jt)dt. (34)

The two market prices of risk follow from Itô’s Lemma:

λ1,t = γσK + (1− θ) γ − 1

ψ − 1

νπ,t
σK

xπ̂
x

(35)

λ2,t =
γ − 1

ψ − 1

[
σa
xa
x

+ θ(ā− at)
νλt
σa

xλ̂
x

]
. (36)

The first market price of risk is higher when there is uncertainty about the level π, and

when γ > 1 > 1/ψ. The second market price of risk can be decomposed in two parts (see

also Cagetti, Hansen, Sargent, and Williams, 2002): the usual price for risk and a price of

uncertainty about the persistence parameter λ. Due to the presence of the difference ā− at,
and knowing that when γ > 1 > 1/ψ we have xλ̂/x > 0, this second part of the market

price of risk becomes countercyclical. Thus, assets that are strongly exposed to productivity

shocks B̂a have more volatile cash flows when consumption volatility is high and therefore

command a higher risk premium. Ostensibly, this theoretical implication is consistent to the

findings of Boguth and Kuehn (2013), who conclude that stocks with volatile cash flows in

uncertain aggregate times require higher expected returns.

The equilibrium risk-free rate follows:

rt = at + (1− θ)π̂t − γσ2
K − (1− θ) γ − 1

ψ − 1

xπ̂
x
νπ,t. (37)

The dynamics of the risk-free rate are not affected by learning about persistence. Uncer-

tainty about the level of productivity decreases the risk-free rate when γ > 1 > 1/ψ.

The risk premium on the aggregate wealth in the economy can be obtained either by

subtracting the risk-free rate from the expected return of capital (which is at + (1 − θ)π̂t),
or by multiplying σK with the market price of risk (35). It equals

µt − rt = γσ2
K + (1− θ) γ − 1

ψ − 1

xπ̂
x
νπ,t, (38)

and increases with uncertainty about the level of productivity.
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6 Conclusion

In this paper, we show that learning about the persistence in productivity impacts consump-

tion’s response to long-run productivity shocks and generates countercyclical consumption

volatility. In bad economic times, negative news prompt agents to extrapolate that pro-

ductivity becomes more persistent. The opposite extrapolation occurs in good times, when

negative news induce less persistence. This asymmetric response increases consumption

volatility in bad times but reduces it in good times, in line with empirical evidence. In con-

trast, we find that learning about the level of productivity impacts consumption’s response to

short-run shocks and, under certain calibrations, can potentially yield a procyclical volatility

of consumption.

Our analysis essentially compares the equilibrium implications of learning about the level

of productivity and learning about the persistence. Notably, the model that we propose is

more general and allows the agent to learn simultaneously about these two parameters. Each

type of learning would affect consumption differently. Learning about the level of produc-

tivity helps reduce the unconditional level of consumption volatility, whereas learning about

the mean-reverting speed helps match the conditional properties of consumption volatility.

Because these two types of learning have different implications for the behavior of consump-

tion volatility, a useful exercise would be to use this trade-off to structurally estimate the

parameter θ and, therefore, determine the type of learning that is actually present in the

economy. This analysis is left for future research.
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A Learning

We apply the following standard theorem on Bayesian learning (Liptser and Shiryayev, 1977):

Theorem 1 Consider an unobservable process f and an observable process θ:

dft = [a0(t, θ) + a1(t, θ)ft] dt+ b1(t, θ)dZft + b2(t, θ)dZθt (39)

dθt = [A0(t, θ) +A1(t, θ)ft] dt+B1(t, θ)dZft +B2(t, θ)dZθt . (40)

All the parameters can be functions of time and of the observable process. Liptser and Shiryayev
(1977) show that the filter evolves according to (we drop the dependence of coefficients on t and θ
for notational convenience):

df̂t = (a0 + a1f̂t)dt+ [(b ◦B) + νtA
>
1 ](B ◦B)−1[dθt − (A0 +A1f̂t)dt] (41)

dνt
dt

= a1νt + νta
>
1 + (b ◦ b) + [(b ◦B) + νtA

>
1 ](B ◦B)−1[(b ◦B) + νtA

>
1 ]>, (42)

where

b ◦ b = b1b
>
1 + b2b

>
2 (43)

B ◦B = B1B
>
1 +B2B

>
2 (44)

b ◦B = b1B
>
1 + b2B

>
2 . (45)

Write the dynamics of the observable variables:

[
dKt

dft

]
=


[

Ktat − Ct
λ̄(1− θ)(ā− at)

]
︸ ︷︷ ︸

A0

+

[
Kt(1− θ) 0

0 θ(ā− at)

]
︸ ︷︷ ︸

A1

[
π
λ

] dt+

[
σKKt 0

0 σa

]
︸ ︷︷ ︸

B2

[
dBK,t
dBa,t

]
. (46)

All the other matrices in Theorem 1 are equal to zero. Then[
dπ̂

dλ̂

]
=

[
(1−θ)νπ,t

σK
0

0
θ(ā−at)νλ,t

σa

][
dB̂K,t
dB̂a,t

]
, (47)

where

dB̂K,t ≡
1

σKKt
{dKt − [Kt(at + (1− θ)π̂t)− Ct] dt} (48)

dB̂a,t ≡
1

σa

{
dat −

[
θλ̂t + (1− θ)λ̄

]
(ā− at)dt

}
. (49)

are independent Brownian motions coming from the filtration of the agent. The posterior uncer-
tainties about π and λ evolve according to

dνπ,t = −
(1− θ)2ν2

π,t

σ2
K

dt (50)

dνλ,t = −
θ2(ā− at)2ν2

λ,t

σ2
a

dt. (51)
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B Equilibrium

The differential operator LJ given by

LJ = [K(a+ (1− θ)π̂)− C]JK + [θλ̂+ (1− θ)λ̄](ā− at)−
(1− θ)2ν2

π

σ2
K

Jνπ −
θ2(ā− a)2ν2

λ

σ2
a

Jνλ

+
1

2

(
σ2
KK

2JKK + σ2
aJaa +

(1− θ)2ν2
π

σ2
K

Jπ̂π̂ +
θ2(ā− a)2ν2

λ

σ2
a

J
λ̂λ̂

)
+ (1− θ)KνπJKπ̂ + θ(ā− a)νλJaλ̂.

(52)

The guess of the value function follows from

J(K, a, π̂, λ̂, νπ, νλ) =
C1−γ

1− γ

[
βx(a, π̂, λ̂, νπ, νλ)

]φ
(53)

=

(
K

x(a,π̂,λ̂,νπ ,νλ)

)1−γ

1− γ

[
βx(a, π̂, λ̂, νπ, νλ)

]φ
(54)

=
K1−γ

1− γ
βφx(a, π̂, λ̂, νπ, νλ)

− 1−γ
1−ψ . (55)

The HJB (52) can then be written in terms of the wealth-consumption ratio x to obtain the following
partial differential equation:

0 = a+ (1− θ)π̂ −
γσ2

K

2
− βψ

ψ − 1
+

1

ψ − 1

1

x

+
[θλ̂+ (1− θ)λ̄](ā− a)

ψ − 1

xa
x
− (1− θ)(γ − 1)νπ

ψ − 1

xπ̂
x
− (1− θ)2ν2

π

σ2
K(ψ − 1)

xνπ
x
−
θ2(ā− a)2ν2

λ

σ2
a(ψ − 1)

xνλ
x

+
1

ψ − 1

(
σ2
a

2

xaa
x

+
(1− θ)2ν2

π

2σ2
K

xπ̂π̂
x

+
θ2(ā− a)2ν2

λ

2σ2
a

x
λ̂λ̂

x
+ θ(ā− a)νλ

x
aλ̂

x

)
− γ + ψ − 2

(ψ − 1)2

(
σ2
a

2

x2
a

x2
+

(1− θ)2ν2
π

2σ2
K

x2
π̂

x2
+
θ2(ā− a)2ν2

λ

2σ2
a

x2
λ̂

x2
+ θ(ā− a)νλ

xaxλ̂
x2

)
.

(56)

Let us denote by xy the partial derivative of the wealth-consumption ratio with respect to the
state variable y. From the above Equation, the dynamics of consumption satisfy

dCt
Ct

= µCt dt+
[
σCK,t σCa,t

] [dB̂K,t
dB̂a,t

]
, (57)

where the diffusion terms σCK,t and σCa,t are given by (20)-(21) in the main text and the drift of
consumption is given by

µCt ≡ ψ[at + (1− θ)π̂t]−
γ(ψ − 1)

2
σ2
K − βψ − γ(1− θ)νπ,t

xπ̂
x

+ (γ + φ)

(
σ2
a

2

x2
a

x2
+

(1− θ)2ν2
π,t

2σ2
K

x2
π̂

x2
+
θ2(ā− at)2ν2

λ,t

2σ2
a

x2
λ̂

x2
+ θ(ā− at)νλ,t

xaxλ̂
x2

)
.

(58)
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B.1 The case θ = 0 (learning about level)

When θ = 0, the PDE for the wealth-consumption ratio x satisfies:

0 = a+ π̂ −
γσ2

K

2
− βψ

ψ − 1
+

1

ψ − 1

1

x

+
λ̄(ā− a)

ψ − 1

xa
x
− (γ − 1)νπ

ψ − 1

xπ̂
x
− ν2

π

σ2
K(ψ − 1)

xνπ
x

+
1

ψ − 1

(
σ2
a

2

xaa
x

+
ν2
π

2σ2
K

xπ̂π̂
x

)
− γ + ψ − 2

(ψ − 1)2

(
σ2
a

2

x2
a

x2
+

ν2
π

2σ2
K

x2
π̂

x2

)
.

(59)

This is an equation in three state variables: at, π̂t, and νπ,t.

B.2 The case θ = 1 (learning about persistence)

When θ = 1, the PDE for the wealth-consumption ratio x satisfies:

0 = a−
γσ2

K

2
− βψ

ψ − 1
+

1

ψ − 1

1

x
+
λ̂(ā− a)

ψ − 1

xa
x
−

(ā− a)2ν2
λ

σ2
a(ψ − 1)

xνλ
x

+
1

ψ − 1

(
σ2
a

2

xaa
x

+
(ā− a)2ν2

λ

2σ2
a

x
λ̂λ̂

x
+ (ā− a)νλ

x
aλ̂

x

)
− γ + ψ − 2

(ψ − 1)2

(
σ2
a

2

x2
a

x2
+

(ā− a)2ν2
λ

2σ2
a

x2
λ̂

x2
+ (ā− a)νλ

xaxλ̂
x2

)
.

(60)

This is an equation in three state variables: at, λ̂t, and νλ,t.
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