
“AHaJ1011” — 2018/10/11 — 4:50 — page 1 — #1i
i

i
i

i
i

i
i

Asset Pricing with Persistence Risk

Daniel Andrei
McGill University

Michael Hasler
University of Toronto

Alexandre Jeanneret

HEC Montréal

Persistence risk is an endogenous source of risk that arises when a rational
agent learns about the length of business cycles. Persistence risk is positive

during recessions and negative during expansions. This asymmetry, which

solely results from learning about persistence, causes expected returns, return
volatility, and the price of risk to rise during recessions. Persistence risk predicts

future excess returns, particularly at 3- to 7-year horizons. Its predictability

is strongest around business-cycle peaks and troughs. We confirm the model’s
predictions in the data and provide evidence that persistence risk is priced in

financial markets. (JEL D51, G11, G12)
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much research over the past decade. The driving force behind this surge
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increases in uncertainty (Bloom, 2009; Jurado et al., 2015). A growing
body of theoretical and empirical literature demonstrates the damaging
effects of uncertainty on the real economy, such as depressed investment
and hiring, sluggish economic performance, and declines in consumption
expenditures, among many others.1

A basic question is how does uncertainty affect asset prices. Because
uncertainty influences investors’ decisions, it must affect equilibrium
asset returns. In this paper, we show that investors’ learning amplifies
the impact of uncertainty on asset prices. This amplification seems
counterintuitive: learning is expected to reduce uncertainty and to
attenuate its impact. Yet we theoretically and empirically prove that
learning amplifies asset price fluctuations and increases the price of risk,
particularly during recessions.

We build a general equilibrium model in which a representative agent
faces uncertainty about the path of future economic growth. We depart
from the incomplete information literature, which assumes that the
unknown dimension is the level of expected economic growth.2 Instead,
we assume that the level of expected economic growth is known, but its
degree of persistence is not, that is, the agent is uncertain about the
length of business cycles.

An environment with uncertainty about the length of business-cycles
yields three novel implications. First, learning about persistence induces
an asymmetry in the formation of beliefs. The agent revises her beliefs
about persistence in bad times in the opposite direction as she does
in good times.3 In bad times, negative news about economic growth
signals greater persistence. Under a preference for early resolution of
uncertainty, greater persistence—that is, more long-run risk—amplifies
the negative effect of news. In good times, negative news signals less
persistence, which attenuates the negative effect of news. By the same
logic, positive news signals less persistence in bad times (which amplifies
its effect) but more persistence in good times (which attenuates its
effect). Overall, learning creates an asymmetry that makes bad times
riskier than good times and increases expected returns, return volatility,
and the price of risk during recessions.

The second implication is that belief revisions are large around
business-cycle peaks and troughs. Business-cycle peaks and troughs are
extreme times, characterized by strongly positive or negative economic
growth. During such times, changes in economic growth are highly

1For a comprehensive review of this literature, see Bloom (2014). See also Jurado
et al. (2015) and Ludvigson et al. (2018) and the references therein.

2Extensive surveys of this literature can be found in Ziegler (2003) and Pastor and
Veronesi (2009).

3Throughout the paper, we define good (bad) times as periods during which the level
of expected economic growth is above (below) its long-term mean.
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informative about the degree of persistence. Consequently, beliefs
become more volatile. This leads to higher volatility and risk premiums
not only during severe recessions but also during strong economic
expansions.

The third implication is that the informativeness of news varies
endogenously with the state of the economy. This causes the agent’s
subjective uncertainty about persistence to fluctuate: uncertainty
decreases in states when news is more informative about persistence
(and belief revisions are large), and it increases in states when news
is less informative (and belief revisions are small). Therefore, learning
about persistence affects aggregate risk and uncertainty in opposite
ways: in states when belief revisions are large, aggregate risk is high
but uncertainty about persistence is low.

The driver of these implications is a source of risk that arises
solely when persistence is uncertain. This source of risk, which we
call persistence risk, is the covariance between changes in beliefs about
persistence and changes in expected economic growth. Because belief
revisions are asymmetric, persistence risk is positive in bad times and
negative in good times. In extreme times, persistence risk is large in
absolute value. Persistence risk is priced in equilibrium and drives all
asset pricing moments. Volatility, risk premiums, and Sharpe ratios
increase during bad times, when persistence risk is positive, but also
during very good times, when persistence risk is negative and large in
magnitude.

We use the maximum likelihood estimation (Hamilton, 1994) to
calibrate the model to real gross domestic product (GDP) growth and
analyst forecast data over the period Q4:1968–Q4:2016. The estimation
shows that the degree of persistence in output growth varies significantly
over time. Using the estimated parameters, we generate model-implied
time series for stock return volatility, the risk premium, and the Sharpe
ratio. These model-implied asset pricing moments align well with their
empirical counterparts.

The estimation provides time series of the uncertainty about
persistence and persistence risk, which we use to test our model’s
predictions. First, the asymmetric formation of beliefs implies that the
equity risk premium, Sharpe ratio and stock return volatility increase
with persistence risk. Second, learning induces large belief revisions
and increases asset pricing moments around business-cycle peaks and
troughs, which implies U-shaped relationships between asset pricing
moments and persistence risk. Third, large belief revisions contribute
to faster resolution of uncertainty about persistence, which implies a
negative relationship between asset pricing moments and the uncertainty
about persistence. We find supporting evidence for these theoretical
predictions.
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Because high persistence risk yields a large risk premium, it
must positively predict future excess returns. The data confirm this
predictability, particularly at 3- to 7-year horizons. Furthermore,
learning implies stronger return predictability in extreme times, when
economic growth is far from its long-term mean. This implication,
confirmed by the data, is unique to persistence risk. In contrast,
the price-dividend ratio does predict future excess returns, but its
predictability does not strengthen in extreme times. This provides
evidence that learning is the channel through which persistence risk
is priced in the equity market.

Our work belongs to the incomplete information literature. Most
studies in this literature assume that the single unobservable dimension
is the level of expected output growth.4 As Johannes et al. (2016) argue,
learning about the level of expected growth ignores confounding effects,
which occur when uncertainty about one quantity makes learning about
other quantities more difficult. Confounding effects magnify uncertainty,
which is helpful for empirically relating changes in beliefs and asset
prices. In contrast, we show that standard learning about a single
parameter is sufficient to generate empirically relevant asset pricing
implications. We obtain this result with a unidimensional learning
framework in which we focus on the persistence of expected output
growth rather than on its level. None of our asset pricing implications
obtain with learning about the level of expected growth.

Another related strand of literature posits that investors’ uncertainty
about the conditional distribution of consumption growth explains
a time-varying price of risk. Johannes et al. (2016) show that
multidimensional learning induces significant variation in long-run
beliefs. Collin-Dufresne et al. (2016b) show that learning generates long-
run risk and implies a large equilibrium risk premium under a preference
for early resolution of uncertainty. Kozlowski et al. (2015) show that
belief updating generates a more persistent economic response from
extreme shocks than from ordinary shocks: a negative tail event can
trigger “secular stagnation.”5 Hansen and Sargent (2010, 2017) propose

4See Detemple (1986), Veronesi (1999, 2000), Brennan and Xia (2001), Dumas et al.
(2009), and Ai (2010). Two exceptions are worth noting. Pakoš (2013) analyzes an economy
in which a representative agent cannot distinguish between a mild recession and a “lost
decade,” which exogenously introduces asymmetry and a stronger response to news in bad
times. In our case, the asymmetry arises endogenously. Andrei et al. (2018) build a model
in which agents with isoelastic utility disagree about the length of business cycles. They
do not study the implications of learning about persistence when agents have a preference
for early resolution of uncertainty.

5In related work, Collin-Dufresne et al. (2016a) propose experiential learning (young
people update beliefs more in response to aggregate shocks than do old people) as a
mechanism for time variation in the price of risk. van Nieuwerburgh and Veldkamp
(2006) show that learning about productivity implies economic growth asymmetries, with
sharp downturns and gradual recoveries. Croce et al. (2015) provide a foundation for the
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investors’ fear of model misspecification: when the economic model is
unknown, the price of risk fluctuates because “a pessimist thinks that
good news is temporary and that bad news endures” (Hansen and
Sargent, 2010, p. 129). In other words, investors choose a model with
high persistence in bad times and a model with low persistence in good
times.6

The common theme in all of the above papers is that agents do
not know the true structure of the economy. This induces uncertainty
about the model structure, which resolves slowly over time. In contrast,
in our framework, the agent assigns probability one to a model with
time-varying but unobservable persistence and updates beliefs with full
knowledge of the structure of the economy and without fear of model
misspecification. Although our model features standard learning about
a single parameter, we show that the impact of business-cycle shocks
depends on the state of the economy: in our framework, ordinary shocks
trigger large belief revisions and significant fluctuations in asset prices
around business-cycle peaks and troughs.

More broadly, several consumption-based models obtain a coun-
tercyclical price of risk, through various approaches. One approach
assumes exogenous movements in the conditional volatility of shocks
driving consumption growth. Prominent examples are the long-run
risk model (Bansal and Yaron, 2004) and the time-varying disaster
risk model (Wachter, 2013). A second approach assumes stochastic
risk aversion, like in the habit-formation models. In Campbell and
Cochrane (1999), the price of risk increases during recessions because
the representative agent’s risk aversion depends countercyclically on
the history of consumption growth. Chan and Kogan (2002) show that
such countercyclicality arises in a multiple-agent setting with habit
formation and heterogeneous risk aversion. In contrast, our framework
assumes away exogenous variation in the conditional volatility of
consumption growth or stochastic risk aversion. We also show that
learning about persistence implies a U-shaped relationship between
asset-pricing moments and the state of the economy, whereas this
relationship remains monotone in the long-run risk and habit formation
models.

We propose a novel view of fluctuations in the price of risk. In
our model, investors fear stocks during recessions because a decline
in expected growth signals stronger persistence and thus increases the

downward-sloping term structure of equity risk based on bounded rationality and limited
information.

6Bidder and Dew-Becker (2016) propose a similar argument, whereby ambiguity-
averse investors fear a “worst-case” model in which shocks to expected consumption have
a half-life of 70 years (in Bansal and Yaron (2004), the half-life of shocks is 3 years). See
Hansen (2014) for a comprehensive review of this literature.
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price of risk. This effect arises internally, solely from learning about
persistence. We estimate the parameters of this learning model and focus
on its quantitative implications in a general equilibrium with Epstein-
Zin preferences. We develop, test, and find empirical support for a set of
predictions specific to a model with learning about persistence. Overall,
our study provides evidence of learning about persistence in financial
markets and describes a mechanism through which the price of risk
increases not only during recessions but also during strong economic
expansions.

1. Theory

In this section, we introduce an economic model with uncertainty about
persistence, formalize the agent’s learning problem, and characterize the
equilibrium asset prices.

The economy is defined over a continuous-time horizon [0,∞). A
representative agent derives utility from consumption. The agent has
Kreps-Porteus preferences (Epstein and Zin, 1989; Weil, 1990) with
subjective discount rate β, relative-risk aversion γ, and elasticity of
intertemporal substitution ψ. The indirect utility function is given by

Jt=Et
[∫ ∞

t

h(Cs,Js)ds

]
, (1)

where the aggregator h is defined like in Duffie and Epstein (1992):

h(C,J)=
β

1−1/ψ

(
C1−1/ψ

[(1−γ)J ]1/φ−1
−(1−γ)J

)
, (2)

with φ≡ 1−γ
1−1/ψ . The agent prefers early resolution of uncertainty when

1−φ>0.
The process of aggregate output in the economy evolves according to

dδt/δt=ftdt+σδdW
δ
t . (3)

The agent observes the expected output growth ft, which is measured
by the average growth forecast obtained from a survey of professional
forecasters. This average forecast mean reverts toward a long-term mean
f̄ according to

dft=θt(f̄−ft)dt+σfdW f
t . (4)

In addition to the average forecast ft, the agent observes a measure
of cross-sectional dispersion from the panel of forecasts. The forecast
dispersion follows a square root process (Cox et al., 1985) with long-term
mean ḡ, mean-reversion speed κg, and volatility parameter σg:

dgt=κg(ḡ−gt)dt+σg
√
gt

(
ρdW f

t +
√

1−ρ2dW g
t

)
. (5)

6
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Equation (5) is motivated by the fact that the forecast dispersion is
typically measured by the difference between the 75th percentile and
the 25th percentile of the forecasts. This difference is always positive,
it has a positive long-term mean, and it mean reverts. These properties
imply that the square root process is particularly well suited to model
the forecast dispersion.7

The agent operates under incomplete information. Specifically, the
agent does not observe the parameter θt in Equation (4), that is, the
persistence of the average forecast. This parameter has two components:
an observable long-term average and an unobservable, time-varying
noise with zero mean. We thus define θt≡ θ̄+λt, where λt follows

dλt=−κλtdt+σλdWλ
t . (6)

The standard Brownian motions W δ
t , W f

t , W g
t , and Wλ

t are mutually
independent, and the parameters f̄ , θ̄, κg, κ, σδ, σf , σg, σλ, and ρ are
known constants.

We make several simplifying assumptions. First, the conditional
volatilities of shocks have no exogenous movements (σδ, σf , σg, and σλ
are constant). Second, the agent knows the true structure of the economy
(i.e., the model specification and its parameters) and perfectly trusts this
structure, without fear of model misspecification or ambiguity aversion.
Third, learning is unidimensional: the only unobservable variable is λt.
These assumptions are made to isolate the effects of learning about
persistence. Stochastic volatility, fear of model misspecification, and
multidimensional learning have been the focus of separate studies.8

1.1 Learning
The agent continuously observes the aggregate output process δt, the
average forecast ft and the dispersion among forecasters gt, but does
not observe the persistence parameter λt. Denote the information set
of the agent at time t by Ft, the estimated unobservable component of
the mean-reversion speed by λ̂t≡E[λt|Ft], and its posterior variance by

νλ,t≡E[(λt−λ̂t)2|Ft]. Standard Kalman filtering implies

λt∼N(λ̂t,νλ,t), (7)

7In Appendix A, we provide an information-processing interpretation for the forecast
dispersion dynamics assumed in Equation (5). We show that, when two forecasters disagree
about the long-term mean of the expected output growth rate (Berrada, 2006) and about
the informativeness of a public news signal (Dumas et al., 2009), the resultant forecast
dispersion dynamics can be written like in Equation (5).

8The long-run risk literature focuses on stochastic variation in the conditional
volatility of shocks (Bansal et al., 2012; Bansal and Yaron, 2004). Hansen and Sargent
(2010, 2017), among others, study fear of model misspecification. Johannes et al. (2016)
analyze multidimensional learning.

7
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where N(m,v) is the Normal distribution with mean m and variance v.

In what follows, we refer to the estimate λ̂t as the filter and
to the posterior variance νλ,t as the uncertainty about persistence.
The following proposition obtains from filtering theory (Liptser and
Shiryaev, 2001), the proof of which is provided in Appendix B.
Proposition 1 (Learning about persistence). The filter evolves
according to

dλ̂t=−κλ̂tdt+
(f̄−ft)νλ,t

σf
dŴ f

t −
ρ√

1−ρ2

(f̄−ft)νλ,t
σf

dŴ g
t , (8)

where Ŵ f
t and Ŵ g

t are independent standard Brownian motions under
the filtration Ft. Equations (B12) and (B13) provide their definitions.

The uncertainty about persistence is locally deterministic. It evolves
according to

dνλ,t
dt

=σ2
λ−2κνλ,t−

(f̄−ft)2ν2
λ,t

σ2
f (1−ρ2)

. (9)

The two independent Brownian motions driving the dynamics of the
filter, Ŵ f

t and Ŵ g
t , are defined such that under the filtration of the

agent, ft and gt evolve according to

dft=(θ̄+λ̂t)(f̄−ft)dt+σfdŴ f
t , (10)

dgt=κg(ḡ−gt)dt+σg
√
gt

(
ρdŴ f

t +
√

1−ρ2dŴ g
t

)
. (11)

At time t, the agent observes changes in the average forecast and in
the forecast dispersion. These changes, which are generated by forecast
shocks dŴ f

t and by dispersion shocks dŴ g
t , are informative about the

mean-reversion speed λt. Thus, both shocks drive the belief updating
rule (Equation (8)).

To develop intuition and understand the implications of Proposition
1, it is useful to think of the unobservable degree of persistence as a
regression coefficient between current values of a process and its previous
values. When this regression coefficient is unobservable, the agent uses
past observations to estimate it. Therefore, the agent’s estimate of the
degree of persistence depends on the history of the process. This result
arises once the persistence of a mean-reverting process is unobservable
and must be estimated. It implies that belief updating depends on the
state of the economy.9

In the context of our model, the above intuition implies that the
conditional covariance between changes in the filter λ̂t and changes in

9See also Xia (2001) for a similar intuition in a setting with learning about
predictability.

8
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the average forecast ft is state-dependent. We label this conditional
covariance persistence risk :

Persistence risk≡ 1

dt
Covt[dλ̂t,dft]=(f̄−ft)νλ,t. (12)

Persistence risk differs from zero only in presence of uncertainty
about persistence (when νλ,t>0). Persistence risk is positive in bad
times (when ft<f̄) and negative in good times (when ft>f̄).10 These
properties yield three implications, which we state as corollaries.
Corollary 1. Belief updating is asymmetric: negative forecast shocks
increase an agent’s perceived persistence in bad times and decrease it
in good times; conversely, positive forecast shocks decrease an agent’s
perceived persistence in bad times and increase it in good times.

This corollary follows from Equation (12), which shows that the
covariance between changes in the filter and changes in the forecast
depends on the distance between the long-run output growth and the
current forecast, f̄−ft. We refer to this distance as the output growth
gap. In bad times, when the output growth gap is positive, negative
forecast shocks increase the perceived degree of persistence (i.e., λ̂t
decreases). The opposite arises in good times, when negative forecast
shocks decrease the perceived degree of persistence. Similarly, positive
forecast shocks increase persistence in good times and decrease it in bad
times.
Corollary 2. Forecast shocks trigger large belief revisions around
business-cycle peaks and troughs, that is, when the expected growth
is very high (ft� f̄) or very low (ft� f̄).

This corollary follows directly from the conditional variance of the
filter,

1

dt
Vart[dλ̂t]=

1

1−ρ2

(f̄−ft)2ν2
λ,t

σ2
f

, (13)

which increases when the output growth gap is large in absolute value.
Intuitively, if ft is far from its long-term mean, learning from forecast
shocks and dispersion shocks is more effective for estimating λt because
the signal-to-noise ratio in Equation (4) is high. Since shocks are highly
informative about persistence in extreme times (when ft� f̄ or ft� f̄),
beliefs become more volatile.

The dispersion in forecasts amplifies the conditional variance of the
filter in Equation (13). As Proposition 1 shows, when the correlation ρ is
nonzero, dispersion shocks are informative about the length of business

10Persistence risk can be negative in the same way that a stock can have a negative
beta. This occurs in good times, when negative forecast shocks imply less persistence (for
an agent who prefers early resolution of uncertainty, less persistence is good news).

9



“AHaJ1011” — 2018/10/11 — 4:50 — page 10 — #10i
i

i
i

i
i

i
i

The Review of Financial Studies / v 00 n 0 2015

cycles, and their informativeness increases with the magnitude of the
output growth gap.

Overall, the conditional volatility of the filter is time-varying and
increases when the forecast ft moves away from its long-term mean
f̄ , yielding larger belief revisions. This effect is distinct from other
mechanisms proposed in the literature. In Kozlowski et al. (2015),
tail events trigger large belief revisions; in Johannes et al. (2016),
multidimensional learning magnifies uncertainty and generates stronger
shocks to beliefs. Here, learning is unidimensional, and forecast
shocks dŴ f

t are ordinary. These shocks, however, trigger large belief
revisions when the growth forecast is either very high or very low.
Corollary 3. The uncertainty about persistence νλ,t is history-
dependent. It decays faster in extreme times (when ft� f̄ or ft� f̄)
and increases when the forecast ft is close to its long-term mean f̄ (i.e.,
in “normal times”).

Corollaries 2 and 3 are closely related. This can be seen by rewriting
the uncertainty-updating rule for νλ,t (Equation (9)) using the result of
Corollary 2, Equation (13):

dνλ,t
dt

=σ2
λ−2κνλ,t−

1

dt
Vart[dλ̂t]. (14)

According to the last term, uncertainty decays faster when the
conditional variance of the filter is high. This arises in extreme times,
when forecast shocks are highly informative about the degree of
persistence. Once the forecast reverts to its long-term mean, the last
term in (14) becomes negligible and uncertainty increases again. In
short, uncertainty about persistence is time-varying. This differs from
the standard uncertainty-updating rule encountered in previous work,
where uncertainty is constant (e.g., Dumas et al., 2009; Scheinkman and
Xiong, 2003).

Equation (14) indicates a negative relationship between the variance
of the filter and uncertainty about persistence. A simple way to
understand this (counterintuitive) relationship is to consider a sequence
of negative forecast shocks in bad times. Each of these shocks helps
resolve uncertainty but, in turn, magnifies the output growth gap. Beliefs
become more volatile after each shock, but better learning decreases the
uncertainty about persistence.

1.2 Equilibrium asset prices
Solving for the equilibrium involves writing the HJB equation:

max
C
{h(C,J)+LJ}=0, (15)

10
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with the differential operator LJ following from Itô’s lemma. We guess
the following value function (Benzoni et al., 2011):

J(C,f,λ̂,νλ)=
C1−γ

1−γ [βI(x)]
φ
, (16)

where I(x) is the wealth-consumption ratio, and x≡ [f λ̂ νλ]> denotes
the state vector.11

Substituting the guess (16) into the HJB Equation (15) and imposing
the market-clearing condition Ct=δt, yields a partial differential
equation (PDE) for the wealth-consumption ratio. We numerically solve
this equation using Chebyshev polynomials (Judd, 1998). Appendix
C describes the equilibrium and provides details about the numerical
procedure.

To understand the impact of learning about persistence on the
dynamics of the wealth-consumption ratio, we first characterize the signs
of the partial derivatives of the wealth-consumption ratio with respect
to two state variables:12

If >0, Iλ̂>0. (17)

Let σI(xt)≡ [σIf (xt) σIg(xt)] be the diffusion vector of the wealth-
consumption ratio. As detailed in Appendix C, this vector has two
elements:

σIf (xt)=σf
If
I

+
(f̄−ft)νλ,t

σf

Iλ̂
I
, (18)

σIg(xt)=
−ρ√
1−ρ2

(f̄−ft)νλ,t
σf

Iλ̂
I
. (19)

The first element, σIf (xt), represents the sensitivity of the wealth-

consumption ratio to forecast shocks dŴ f
t ; the second element, σIg(xt),

represents the sensitivity of the wealth-consumption ratio to dispersion
shocks dŴ g

t .
These sensitivities are directly driven by persistence risk. Equa-

tion (18) shows that learning about persistence increases the sensitivity
of the wealth-consumption ratio to forecast shocks during bad times,

11The forecast dispersion gt enters into the optimization problem only through the

dispersion shocks dŴ g
t . This is because the level of dispersion gt does not affect the level

of the forecast (which is observable); instead, changes in dispersion affect the agent’s
learning problem through the correlation ρ. Once learning takes place, the only relevant

state variables for asset pricing are ft, λ̂t, and νλ,t.

12The first inequality states that the wealth-consumption ratio increases with the
forecast; the second inequality states that the wealth-consumption ratio decreases when

the growth forecast is more persistent (i.e., when λ̂t is smaller). We verify these inequalities
in Appendix C.2.

11
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when persistence risk is positive (a consequence of Corollary 1).
Furthermore, Equation (19) shows that the wealth-consumption ratio
is also driven by dispersion shocks. This arises when dispersion shocks
are correlated with forecast shocks. The sign and magnitude of both
the correlation ρ and persistence risk jointly dictate the direction
and magnitude of the sensitivity of the wealth-consumption ratio to
dispersion shocks.

1.2.1 Risk-free rate and market price of risk. Following Duffie
and Epstein (1992), the state price density is given by

ξt=exp

[∫ t

0

hJ(Cs,Js)ds

]
hC(Ct,Jt)

=exp

[∫ t

0

(
φ−1

I(xs)
−βφ

)
ds

]
βφC−γt I(xt)

φ−1.

(20)

The risk-free rate rf,t and the three-dimensional market price of risk
mt directly result from the dynamics of the state price density,

dξt
ξt

=−rf,tdt−m>t dŴt, (21)

where Ŵt≡ [W δ
t ,Ŵ

f ,Ŵ g
t ]> is the Brownian vector driving the output

process, the growth forecast process, and the dispersion process. Itô’s
lemma yields

rf,t=β+
ft
ψ
− γ+γψ

2ψ
σ2
δ−

1

2
(1−φ)

[
σ2
If (xt)+σ2

Ig(xt)
]
, (22)

mt=
[
γσδ (1−φ)σIf (xt) (1−φ)σIg(xt)

]>
. (23)

Fluctuations in the growth forecast generate a procyclical risk-free
rate, as observed from the second term in (22). The third term is the
precautionary savings effect, which lowers the risk-free rate. When the
agent prefers early resolution of uncertainty (1−φ>0), fluctuations in
the wealth-consumption ratio yield the last term in (22). The resultant
effect is a lower risk-free rate.

The market price of risk in Equation (23) has three components.
The first component is due to output growth shocks dW δ

t . The second
and third components arise when the agent prefers early resolution
of uncertainty (1−φ>0). Since persistence risk drives the wealth-
consumption ratio diffusion terms σIf (xt) and σIg(xt), it also affects
the price of risk required by the agent to bear forecast and dispersion
shocks. The direct implication (from Corollary 1) is that the market
price of risk increases during bad times, when persistence risk is positive.
Furthermore, if ρ<0, the market price of dispersion risk is positive
during bad times.

12
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1.2.2 Asset prices. We assume that dividends are a levered claim on
output (Abel, 1999):

Dt=e−βdtδηt , (24)

where η≥1 is the leverage parameter, and βd>0 is a parameter that
determines the expected growth rate of dividends. Leverage is motivated
by the evidence that the volatility of dividend growth is larger than the
volatility of output growth.13 This specification does not change the
learning problem of the agent.

The stock price is defined as a claim to the dividend process:

dDt

Dt
=

(
−βd+ηµt+

1

2
η(η−1)σ2

δ

)
dt+ησδdW

δ
t . (25)

Define the price-dividend ratio as Π(xt). Its diffusion vector has two
components:

σΠf (xt)=σf
Πf

Π
+

(f̄−ft)νλ,t
σf

Πλ̂

Π
, (26)

σΠg(xt)=
−ρ√
1−ρ2

(f̄−ft)νλ,t
σf

Πλ̂

Π
. (27)

Without leverage (η=1, βd=0), these two components coincide with
σIf (xt) and σIg(xt) from Equations (18) and (19). With leverage, we
expect (and verify in Appendix C.2) the partial derivatives of Π to
satisfy the same inequalities used in Equation (17). The price-dividend
ratio Π(xt) solves a partial differential equation that we provide in
Appendix C.1.

1.2.3 Stock market volatility. The diffusion of stock returns, which
we denote by σt, satisfies

σt=
[
ησδ σΠf (xt) σΠg(xt)

]
, (28)

which, after replacement of (26) and (27), yields the stock return
variance:

‖σt‖2 =η2σ2
δ +

σ2
fΠ2

f

Π2
+

2ΠfΠλ̂

Π2
(f̄−ft)νλ,t︸ ︷︷ ︸

=PRt

+
Π2
λ̂

Π2

1

1−ρ2

(f̄−ft)2ν2
λ,t

σ2
f︸ ︷︷ ︸

= 1
dtVart[dλ̂t]=

1

σ2
f

(1−ρ2)
PR2

t

,

(29)

13Using data from January 1969 to December 2016, the annualized CRSP dividend
growth volatility is approximately 19%. Beeler and Campbell (2012) report values between
11% and 27%. See also Drechsler (2013) for numbers of similar magnitude. In comparison,
the annualized output growth volatility is 1.4%.
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where we denote by PRt≡(f̄−ft)νλ,t our measure of persistence risk.
The stock return variance is directly driven by persistence risk (the

third and fourth terms). Thus, Equation (29) provides a link between
stock market volatility and Corollaries 1 and 2. Corollary 1 implies an
asymmetric market response: the sensitivity of stock prices to news
is stronger when the economy is in bad times and persistence risk is
positive; in contrast, when the economy is in good times, persistence risk
is negative and thus attenuates the sensitivity of stock prices to news.
This asymmetric effect arises through the third term in Equation (29)
and generates countercyclical stock market volatility.

In addition to this countercyclical effect, Corollary 2 implies an
amplification of stock market volatility around business-cycle peaks
and troughs. When the economic growth forecast is unusually low or
unusually high, shocks are highly informative about persistence and
trigger large belief revisions, thereby increasing the volatility of the filter
(the last term in Equation (29)). In turn, this amplifies the volatility of
stock returns.

In sum, a model with learning about persistence generates not only
countercyclical volatility but also increased volatility around business-
cycle peaks and troughs. The dispersion in forecasts amplifies the latter
effect.

1.2.4 Equity risk premium and the aggregate price of risk.
The equity risk premium is defined as the vector product between the
diffusion of stock returns and the market price of risk, RPt≡σtmt. Using
Equations (23) and (28), we obtain

RPt=γησ2
δ +(1−φ)[σIf (xt)σΠf (xt)+σIg(xt)σΠg(xt)]. (30)

The equity risk premium consists of two terms. The first term pertains
to risk generated by output growth shocks and is constant in our model.
The second term can be further developed using Equations (18), (19),
(26), and (27), leading to

RPt=γησ2
δ +(1−φ)

[
σ2
fIfΠf

IΠ
+
IfΠλ̂+Iλ̂Πf

IΠ
(f̄−ft)νλ,t︸ ︷︷ ︸

=PRt

+
Iλ̂Πλ̂

IΠ

1

1−ρ2

(f̄−ft)2ν2
λ,t

σ2
f︸ ︷︷ ︸

= 1
dtVart[dλ̂t]=

1

σ2
f

(1−ρ2)
PR2

t

]
.

(31)

The equity risk premium is countercyclical due to the presence of
persistence risk in the second term in parentheses (Corollary 1). In
addition, Corollary 2 implies a further increase in the risk premium in

14
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very low and very high growth periods, because these are extreme times
during which belief revisions are large (the last term in parentheses).
This latter effect is further amplified by the dispersion in forecasts,
through the correlation parameter ρ.

The aggregate price of risk in this economy (i.e., the Sharpe ratio) is
defined as

SRt≡
RPt
‖σt‖

. (32)

If the impact of learning about persistence is stronger in magnitude for
the equity risk premium than for volatility, then we expect the Sharpe
ratio to be countercyclical and U-shaped (quadratic) with respect to
persistence risk.

In sum, a model with learning about persistence generates two main
implications for the behavior of equilibrium asset prices. First, all asset
pricing moments (the risk premium, volatility, and the Sharpe ratio)
are countercyclical. This is due to the asymmetric nature of learning:
negative shocks imply more persistence in bad times but less persistence
in good times. It is a direct implication of Corollary 1.

The second implication, which is also unique to our model of learning
about persistence, is that asset pricing moments are amplified around
business-cycle peaks and troughs, that is, in unusually low and unusually
high growth periods. These are periods when belief revisions are large.
This implication follows from Corollary 2.

2. Predictions

An important question is whether the above implications are
quantitatively large. In this section, we calibrate the model to U.S.
output data and quantify the impact of learning about persistence on
asset pricing moments.

2.1 Calibration
We use data from the Federal Reserve Bank of Philadelphia, at quarterly
frequency from Q4:1968 to Q4:2016. The realized real GDP growth
rate determines the growth rate of the output process δt.

14 The
mean analysts’ forecast for the 1-quarter-ahead real GDP growth rate
constitutes our proxy for ft. The difference between the 75th and
25th percentiles of analysts’ forecasts for the 1-quarter-ahead real GDP
growth rate (the analysts’ forecasts dispersion) is our proxy for gt.

[Insert Table 1 about here.]

14Using output rather than consumption data allows us to exploit a longer sample
period (the time series of consumption forecasts starts only in Q3:1981).
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Using the dynamics of the filter λ̂t from Equation (8), the dynamics of
the uncertainty about λt from Equation (9), and the filtered Brownian

shocks from Proposition 1, we generate model-implied paths for λ̂t and
νλ,t. We estimate the model using the maximum likelihood method
(Hamilton, 1994) and determine the values of the parameters that
provide the closest fit to realized observations. The uncertainty about
λ0 (i.e., the prior value of uncertainty) is set to the steady-state value,15

whereas the prior value λ̂0 is set to the long-term mean, which is zero.
Appendix D provides details about the estimation.

[Insert Figure 1 about here.]

Table 1 reports the estimated parameters, and Figure 1 displays the
time series of the state variables.16 The estimated average degree of
persistence is much lower than what is typically considered in the long-
run risk literature. The long-term mean of the mean-reversion speed is
θ̄=1.29 (it is approximately 0.25 in long-run risk models, e.g., Bansal
and Yaron 2004). Overall, the estimation indicates a low degree of
persistence in the growth forecast on average, but this persistence is
significantly time varying (Figure 1, panel a), as confirmed by the high
and statistically significant level of volatility σλ. The uncertainty about
persistence νλ,t (Figure 1, panel b) also exhibits strong time variation.
It explains 42.1% of the variation in persistence risk, while the output
growth gap f̄−ft explains the rest (Table D2 in Appendix D.1). Panels c
and d of Figure 1 plot the mean analysts’ forecast ft and our measure
of persistence risk, PRt. Persistence risk reaches a maximum during the
Great Recession of 2008, although the growth forecast is only mildly
negative during the same period. Finally, the correlation ρ between
the average forecast and the forecast dispersion is negative. Thus, the
forecast dispersion is countercyclical. This finding is consistent with
previous studies: van Nieuwerburgh and Veldkamp (2006) find that
the dispersion of GDP forecasts across a panel of forecasters is higher
during recessions; Bloom (2014) confirms this result for forecasts of U.S.
industrial production growth, and the same holds for European countries
(Bachmann et al., 2013). Thus, growth forecast dispersion increases
during downturns.

We generate theoretical predictions using the calibration provided
in Table 1. We set the risk aversion to γ=10 and the elasticity of

15We assume that the agent considers a (local) steady state when computing the prior
on uncertainty about the mean-reversion speed. That is, the uncertainty about λt at time

t=0 is the positive root of the polynomial obtained when
dνλ,t
dt =0. Uncertainty about

persistence initially starts at this level, νλ,0, and then dynamically evolves according to
Equation (9).

16See also Table D1 in Appendix D.1 for the descriptive statistics and further discussion
of these variables.
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intertemporal substitution (EIS) to ψ=1.5. The leverage parameter is
set to η=7, the subjective discount rate to β=0.02, and βd=0.15. This
implies a dividend growth volatility of 10%, which is a lower bound
of what is typically considered.17 The parameters βd and β are chosen
to obtain reasonable values for the average wealth-consumption ratio
(Lustig et al., 2013), price-dividend ratio, and dividend growth rate,
which are approximately 80, 40, and 4.5% in our model.

2.2 Asset pricing implications
We now use the calibrated economy to quantify the stock return
volatility (Equation (29)), the equity risk premium (Equation (31)),
and the equilibrium Sharpe ratio (Equation (32)).18 The three panels
in Figure 2 depict these theoretical asset pricing moments as a function
of the forecast ft. For these plots, we set the filter λ̂t at zero, which
implies that the mean-reversion speed equals its long-term mean, θ̂t= θ̄.
The three lines in each panel correspond to various levels of uncertainty
about persistence, νλ,t.

[Insert Figure 2 about here.]

Asset pricing moments are almost constant when νλ,t=0. In this
case, there is no uncertainty about persistence and none of the asset
pricing moments depends on the state of the economy. In contrast,
in presence of uncertainty about persistence (νλ,t>0), asset pricing
moments become, on average, countercyclical: they are higher when the
growth forecast is lower. This relationship arises from the asymmetric
formation of beliefs described in Corollary 1: negative forecast shocks
imply more persistence when ft<f̄ but less persistence when ft>
f̄ . When the Epstein-Zin agent dislikes persistence, negative shocks
become particularly bad in bad times, but not as bad in good
times. This asymmetry generates countercyclical asset pricing moments.
Moreover, higher uncertainty about persistence strengthens the negative
relationship between asset pricing moments and the forecast. This occurs
because higher uncertainty magnifies the asymmetric effect of learning.

Figure 2 further shows that the relationship between asset pricing
moments and economic conditions is U shaped. This pattern arises
because the informativeness of forecast shocks is stronger in extreme
times, when the forecast is well above or well below its long-term mean.
These are periods when forecast shocks trigger large belief revisions
(Corollary 2); in turn, large belief revisions increase asset pricing

17Beeler and Campbell (2012) report values from 11% to 27%; the CRSP dividend
growth volatility is 19%.

18Appendix C.3 provides additional results for the log price-dividend ratio and the
risk-free rate.
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moments. The U-shaped pattern is particularly pronounced when
uncertainty about persistence is high, because higher uncertainty implies
greater changes in beliefs. Overall, learning about persistence implies
that asset pricing moments depend on the current state of the economy
in a nonmonotonic way. In equilibrium, the asymmetric formation
of beliefs increases risk in bad times. Risk further increases around
business-cycle peaks and troughs, yielding a U-shaped relationship.

We reformulate these theoretical predictions in terms of persistence
risk. As Equations (29) and (31) show, persistence risk is a direct
driver of asset pricing moments, which allows us to develop a set
of testable predictions. First, the negative relationship between asset
pricing moments and the forecast implies a positive relationship between
asset pricing moments and persistence risk. Second, the model implies a
U-shaped (quadratic) relationship between asset pricing moments and
persistence risk. Third, the relationship between asset pricing moments
and persistence risk strengthens in extreme times, when shocks are more
informative about persistence. Finally, uncertainty about persistence
resolves more rapidly when belief revisions are large (Corollary 3), which
induces a negative relation between uncertainty about persistence and
asset pricing moments.

3. Evidence

We now turn to the empirical evaluation of our model. We start
by examining how the model-implied asset prices compare to their
empirical counterparts. We then test how the risk premium, the stock
return volatility, and the Sharpe ratio vary with persistence risk and
with uncertainty about persistence. Finally, we analyze the return
predictability of persistence risk.

3.1 Data
The empirical analysis is based on quarterly U.S. data over the period
Q1:1969–Q4:2016. The estimation performed in Section 2.1 provides
time series of the filtered mean-reversion speed λ̂t and persistence risk,
PRt≡(f̄−ft)νλ,t. Using our state variables, we construct model-implied
time series for the risk premium, Sharpe ratio, stock return volatility,
price-dividend ratio, and risk-free rate.

For the empirical counterparts of these asset pricing quantities, we
compute quarterly stock returns and dividend growth from the value-
weighted CRSP index, which covers NYSE, Amex, and Nasdaq data,
and convert them into real terms using the consumer price index (CPI).
We create a proxy for the ex ante risk-free rate by forecasting the ex
post quarterly real return on 3-month Treasury bills with the previous

18
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year’s inflation and the most recent available 3-month nominal bill yield
(Beeler and Campbell, 2012).

The price-dividend ratio is the price in the last month of the quarter
divided by the sum of dividends paid in the last 12 months. Our proxy for
the risk premium is the fitted value obtained by regressing excess stock
returns on the lagged dividend yield (inverse of the price-dividend ratio),
the lagged default premium (Baa yield minus the 10-year government
bond yield), and stock return volatility.19 Stock return volatility is the
conditional volatility of real stock returns estimated with an exponential
GARCH(1,1) to account for asymmetry in the sensitivity of variance to
news (Nelson, 1991). Appendix E describes the data construction in
detail. All variables are measured in real terms.

3.2 Descriptive analysis of asset pricing moments
In a first analysis, we compare the model-implied asset pricing moments
with their empirical counterparts.

Table 2 presents unconditional descriptive statistics. The model
generates an average risk premium of 6.1% and a stock return volatility
of 19.8%. With the exception of the risk-free rate (for which the model
delivers the volatility, but not the level) and the price-dividend ratio
(for which the model delivers the level, but not the volatility), the asset
pricing moments implied by our model are reasonably close to the data.
Note that the standard deviation of the log price-dividend ratio is low
but similar to that obtained in Bansal and Yaron (2004) and Bansal et al.
(2012), although our model does not assume time variation in output
growth volatility. In Table 3, we regress observed moments on model-
implied moments. Except for the risk-free rate, all slopes are positive
and statistically significant.

[Insert Table 2 about here.]

[Insert Table 3 about here.]

Overall, a model with learning about persistence generates reasonable
asset pricing moments, both in terms of levels and dynamics, despite
that we did not use financial market data in the estimation of our model:
the model-implied asset pricing moments are obtained only after we
calibrate the economy using data on the real GDP growth rate, the
mean forecast, and the forecast dispersion across analysts.

19This choice is based on empirical evidence that the dividend yield (Fama and French,
1988), the default premium (Fama and French, 1989), and the level of stock market
volatility (French et al., 1987) have predictive power for stock market returns.
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3.3 Asset pricing with persistence risk
We now test the theoretical implications of learning about persistence.
Specifically, the model predicts that the risk premium, the stock return
volatility, and the Sharpe ratio vary with persistence risk, PRt≡(f̄−
ft)νλ,t.

As a preliminary exercise, we split the sample into two parts according
to the level of persistence risk, above and below the median. Table 4
compares the conditional asset pricing moments, in the model and the
data. Asset pricing moments increase in times of higher persistence risk.
The differences are statistically and economically significant in all cases.
In times of high persistence risk, the risk premium, the stock return
volatility, and the Sharpe ratio are higher by 2.01%, 2.12%, and 7.18%,
respectively. In addition, the last column of Table 4 shows that the
variance of asset pricing moments also increases when persistence risk is
higher. This implies that asset pricing moments tend to fluctuate more
when persistence risk increases.

[Insert Table 4 about here.]

Panel A of Table 5 presents regression results that confirm the
positive relationship between asset pricing moments and persistence risk.
Stock return volatility, the risk premium, and the Sharpe ratio increase
in persistence risk, with statistically and economically significant
coefficients. For instance, a 1-standard-deviation increase in persistence
risk (0.0093) widens the empirical equity risk premium by 1.64%. These
results confirm our model’s prediction that aggregate risk increases when
persistence risk is high.

3.3.1 U-shaped relationships. We now test the model prediction
that the relationship between asset pricing moments and persistence risk
is nonlinear. As suggested by our theory, panel B of Table 5 introduces
a quadratic term in the regressions. The results offer strong empirical
evidence in support of nonlinearity: the quadratic term is statistically
significant for all moments, in the model and in the data. Furthermore,
accounting for a quadratic term helps explain a larger fraction of the
time variation in asset pricing moments, as measured by the increase
in the R-squared coefficients from panels A to B. In the data, the
explanatory power almost doubles for the risk premium and triples for
the Sharpe ratio.

[Insert Table 5 about here.]

[Insert Table 6 about here.]
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Our model predicts that periods of strongly negative persistence
risk are also associated with a high risk premium and volatility.
These are periods of intense economic growth. The reason is that
news is particularly informative during both very bad and very good
times, thus generating strong variability in beliefs about persistence
around business-cycle peaks and troughs. We thus expect a U-
shaped relationship between asset pricing moments and persistence
risk, whereby large absolute values of persistence risk generate high
asset pricing moments. Table 6 validates this prediction, both in
the model and in the data. It reports the results from regressing
asset pricing moments on persistence risk for two subsamples: the
bottom quartile of persistence risk (i.e., very good times) in panel A
and the remaining observations in panel B. The sign change across
the two subsamples provides evidence of a U-shaped relationship,
which is strongest for the risk premium and the Sharpe ratio. This
nonmonotonicity confirms a prediction that is unique to our model with
learning about persistence. As we discuss in the Internet Appendix,
alternative specifications in a complete information environment (e.g.,
time-varying preferences, stochastic volatility, disaster risk) typically
generate a monotone relationship between asset pricing moments and
economic conditions.

3.3.2 Role of the uncertainty about persistence. Another
specific implication of learning about persistence is that asset pricing
moments decrease with the uncertainty about persistence. From (29)–
(31), asset pricing moments increase in the conditional variance of the

filter Vart[dλ̂t]. Moreover, from Corollary 3, the conditional variance
of the filter reduces the uncertainty about persistence νλ,t (uncertainty
resolves faster with larger belief revisions). The combination of the two
effects yields a negative relationship between asset pricing moments and
uncertainty about persistence.

[Insert Table 7 about here.]

We test this prediction in panel A of Table 7. Uncertainty about
persistence is indeed negatively related to the equity risk premium, the
volatility, and the Sharpe ratio. All slope coefficients are significant,
in the model and in the data. A 1-standard-deviation increase in
uncertainty about persistence (0.2) reduces the equity risk premium by
2.38%. Thus, the data confirm the theoretical prediction that learning
creates a negative relationship between asset pricing moments and
uncertainty about persistence.

According to our model, this negative relationship strengthens in
bad times, when negative forecast shocks magnify the output growth
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gap f̄−ft. The increase in the output growth gap generated by a
negative forecast shock induces both a steeper increase in asset pricing
moments and a steeper decline in the uncertainty about persistence
(because of the last term in Equation (14)). In contrast, in good
times negative forecast shocks reduce the output growth gap and thus
have a dampening effect on the relationship between uncertainty about
persistence and asset pricing moments. We test this asymmetry in panel
B of Table 7. To this aim, we interact νλ,t with a dummy that equals 1
in bad times (ft<f̄) and 0 otherwise. This interaction term is negative
and statistically significant within the model, which indicates that the
negative relationship indeed strengthens in bad times. In the data, the
results go into the right direction, that is, the interaction terms are also
negative, albeit not statistically significant.

The impact of νλ,t on asset pricing moments remains robust when
including ft to control for changes in economic conditions (panel C).
This analysis confirms that the uncertainty about persistence drives
asset pricing moments beyond the business-cycle fluctuations generated
by ft.

20 This implies that fluctuations in persistence risk capture
not only variations in economic conditions but also changes in the
uncertainty about persistence and provides further support for our
channel of learning about persistence.

3.4 Return predictability
The previous section provides evidence that changes in persistence risk
generate fluctuations in expected excess returns. Persistence risk should
then predict future excess returns. We now test the model by evaluating
the return predictability of persistence risk and contrast the results with
the return predictability of the price-dividend ratio.

3.4.1 Return predictability with persistence risk. We consider
the following regression specification, at a quarterly frequency:

K∑

k=1

(rt+k−rf,t+k)=aK+bKPRt+εt+K , (33)

where rt+k and rf,t+k are the log real return and real risk-free rate for
quarter t+k. We consider different horizons: 1 year, 3 years, 5 years,
and 7 years.

[Insert Table 8 about here.]

Table 8 reports the results, which are depicted in panel A for the
model and in panel B for the data. Both panels show that persistence

20The results are also robust to controlling for NBER recessions.
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risk generates strong return predictability. Persistence risk is highly
statistically significant, particularly beyond the 1-year horizon. In
the data, at the 5-year horizon, a 1-standard-deviation increase in
persistence risk (0.0093) increases the cumulative excess return by
7.42%; the associated R2 is 5.3%. The results are similar when we include
controls,21 which indicates that persistence risk contains additional
information for explaining future excess returns, beyond what is already
embedded in the price-dividend ratio, the current level of stock return
volatility, or the level of macroeconomic uncertainty.

Importantly, our measure of persistence risk is only driven by shocks
to the real economy (based on realizations and forecasts of output
growth). Moreover, this predictability arises only when agents face
uncertainty about persistence: if persistence is observable, νλ,t=0, and
the role of persistence risk disappears. Therefore, these results show that
investors are compensated for the risk premium that they demand for
bearing persistence risk.

3.4.2 Asymmetric predictability: High versus low informative
times. When learning about persistence, not all forecast shocks
are equally informative. When ft= f̄ , changes in the forecast ft are
uninformative for the agent because she is unable to learn about the
mean-reversion speed. As Corollary 2 shows, however, news become
particularly informative for large absolute values of f̄−ft. During
extreme times, learning about persistence has the greatest impact
on asset prices, and the relationship between the risk premium and
persistence risk strengthens. Thus, the predictability of future excess
returns is expected to be concentrated during times when the expected
economic growth forecast is far from its long-term mean.

[Insert Table 9 about here.]

We test this prediction by decomposing the data into two subsamples.
We first consider the observations when ft is far from the long-term
average, as determined by the bottom and the top quintiles of ft. We
refer to such periods as “high informative times.” Then we consider
the remaining observations when ft is relatively close to the long-term
average, that is, “low informative times.” Based on this sample split, we

21For robustness, we also consider a set of control variables that are expected to have
predictive power in the data. Consistent with our construction of the risk premium in
Section 3.1, the controls include the price-dividend ratio (Fama and French, 1988), stock
market volatility (French et al., 1987), and the default premium (Fama and French, 1989).
Because persistence risk is a measure of economic uncertainty, we also control for the macro
uncertainty index of Jurado et al. (2015). Table II in the Internet Appendix reports the
results in the data when using such controls.

23



“AHaJ1011” — 2018/10/11 — 4:50 — page 24 — #24i
i

i
i

i
i

i
i

The Review of Financial Studies / v 00 n 0 2015

estimate the following regression:

K∑

k=1

(rt+k−rf,t+k)=aK+bK1HITPRt+cK1LITPRt+εt+K , (34)

where 1HIT and 1LIT are dummies equal to one for observations during
high (HIT) and low (LIT) informative times, respectively, and zero
otherwise.

Table 9 shows that persistence risk is statistically significant for
predicting future stock returns, but only during high informative times.
This is when ft is far from f̄ , either above or below.22 Panel A shows
that the finding is robust to forecast horizons ranging from 3 to 7 years.
This prediction is well supported by the data (panel B), with or without
controls.23

We also separately estimate the regressions during either high or
low informative times and compare the R2 statistics, following the
predictability literature.24 Table 10 confirms that the predictive power is
concentrated when economic news is informative for updating the degree
of persistence. At the 5-year horizon, whereas the R2 in the data is 5.3%
unconditionally, the conditional R2 is 15.6% when ft is far from f̄ and
0% when ft is close to f̄ .

[Insert Table 10 about here.]

Overall, these results endorse our theoretical message that persistence
risk is an important determinant of future excess returns. Further,
persistence risk better predicts future excess returns during high
informative times—around business-cycle peaks and troughs—than
during times when ft is close to its long-term mean.

3.4.3 Return predictability with the price-dividend ratio. A
large body of empirical evidence has consistently found that the price-
dividend ratio predicts future stock returns.25 Thus, we verify whether
the price dividend ratio predicts future excess returns within our model.
However, unlike for persistence risk, our model offers no theoretical
justification for a stronger predictability of the price-dividend ratio in

22Separating observations by low and high values of (f̄−ft)2, using the median or
quartiles, yields similar results.

23In Table III in the Internet Appendix, we control for the log price-dividend ratio, the
stock market volatility, the default premium, and the macro uncertainty index (Jurado
et al., 2015). Including these controls strengthens our results.

24See Rapach et al. (2010), Henkel et al. (2011), and Dangl and Halling (2012).

25See Fama and French (1988), Hodrick (1992), Cochrane (2008), van Binsbergen and
Koijen (2010), and Beeler and Campbell (2012), among others.
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extreme times.26 Thus, when separating low and high informative times,
we expect the price-dividend ratio to remain equally informative about
future returns. To test this, in specification (34), we replace persistence
risk with the log price-dividend ratio. Panels A and B of Table 11 report
results in the model and in the data.

[Insert Table 11 about here.]

The model implies strong predictability of excess returns with the
price-dividend ratio. The relationships are negative and statistically
significant at all horizons (1 year to 7 years), with R2 coefficients ranging
from 6% to 18%. These results are consistent with the data, whether
or not we control for the level of stock market volatility, the default
premium, and the macro uncertainty index of Jurado et al. (2015) (see
Table IV in the Internet Appendix).

However, when we use the price-dividend ratio, we do not find
asymmetry in the predictive relationship. The estimates are remarkably
close across the two subsamples, both in the model and in the
data. The finding that the return predictability of the price-dividend
ratio remains similar across economic conditions indicates that the
predictability of persistence risk is a unique implication of our model
with uncertainty about persistence. Learning about persistence matters
most during unusually bad and good economic conditions, and our
measure of persistence risk captures this. Thus, persistence risk is a
novel source of risk that is priced in the equity market, particularly
around business-cycle peaks and troughs.

4. Concluding Remarks

We propose a novel view of the fluctuations in the price of risk. When the
degree of persistence of expected economic growth is unknown, rational
learning generates a countercyclical price of risk: investors fear stocks
during recessions because a decline in expected growth signals stronger
persistence. Thus, investors’ learning creates persistence risk, which
amplifies asset price fluctuations in bad times but dampens them in
good times. This asymmetry implies an increasing relationship between
persistence risk and asset pricing moments. The model predicts time
variation in asset pricing moments despite constant conditional moments
for consumption and dividend growth.

An important question is whether these results can be obtained in
alternative settings. In the Internet Appendix, we thoroughly address
this question by comparing our model of learning about persistence

26Persistence risk is not the sole driver of the price-dividend ratio, as the price-dividend

ratio jointly depends on ft, λ̂t, and νλ,t.
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with several alternative specifications. We summarize here the main
conclusions. First, in a setup without incomplete information, we show
that asset pricing moments remain constant through the business cycle.
The same result obtains in a setup in which the agent learns about
the level of expected output growth instead of its persistence. These
conclusions emphasize the importance of learning about persistence for
our results. We then turn to a model in which the degree of persistence
is time varying but observable. This alternative setting delivers an
asymmetry, but does not generate a U-shaped relationship between
asset pricing moments and persistence risk. Finally, we compare our
setting with alternative models of countercyclical price of risk, that is,
the model with habit formation and heterogeneous preferences proposed
by Chan and Kogan (2002) and the long-run risk model with stochastic
growth volatility proposed by Bansal and Yaron (2004). Both models
successfully generate a countercyclical price of risk, but they neither
generate the U-shaped relationships between asset pricing moments and
economic conditions nor the strong long-horizon predictability of future
excess returns with the price-dividend ratio.

Our framework offers several directions for future research. It
can be used, for instance, to analyze the impact of macroeconomic
announcements. These announcements reveal information about the
future path of economic growth—including its persistence—prompting
investors to demand a higher risk premium during announcement days
(Savor and Wilson, 2013). Our framework also can be used to study
information acquisition (e.g., investors’ choice on whether to focus on
level or persistence). Finally, the effects of learning about persistence
on the cross-section of asset returns, as well as the effects of investors’
disagreement about persistence, are promising questions to be addressed
in future research.
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Appendix A. An Information-Processing Interpretation for
the Forecast Dispersion Dynamics

The forecast dispersion dynamics assumed in Equation (5) can be endogenously

obtained in the following framework. Assume that only two professional forecasters,
1 and 2, exist. From each forecaster’s point of view, the dynamics of the output

growth rate and the expected output growth rate satisfy, respectively,

dδt

δt
= f̃tdt+σδdB

δ
t (A1)

df̃t=κt(f̄i− f̃t)dt+σfdBfit, for i∈{1,2}. (A2)

In addition, forecasters observe a news signal, which they interpret differently

(e.g., they might use different forecasting models). Each forecaster believes that the
dynamics of the signal is

dst=ρitdB
f
it+

√
1−ρ2

itdB
s
it, (A3)

where the three-dimensional vector (Bδt ,B
f
it,B

s
it) is a standard Brownian motion.

In this framework, forecasters have heterogeneous beliefs about the long-

term mean of the expected output growth rate (Berrada, 2006) and about the

informativeness of the public news signal (Dumas et al., 2009). More precisely, each
forecaster has a different parameter f̄i in Equation (A2) and a different correlation

parameter ρit (which can be time-varying) in Equation (A3).

Forecasters do not observe the expected output growth rate and therefore
apply the Kalman filter to obtain a forecast fit≡Eit[f̃t], where Eit[·] stands for

the expectation conditional on forecaster i’s information set at time t. After an

application of standard filtering theory (Liptser and Shiryaev, 2001), the dynamics
of the two forecasts can be written under the following general form:

df1t=κt(f̄1−f1t)dt+σf1,tdW1t, (A4)

df2t=κt(f̄2−f2t)dt+σf2,t

(
ρftdW1t+

√
1−ρ2

ftdW2t

)
, (A5)

where the Brownian motion W1t is independent W2t, and ρft measures the
correlation between the two forecasts. The functional forms for σf1,t, σf2,t, and

ρft are not necessary for the arguments made here. The dynamics of the forecast

dispersion, which we denote by gt≡f1t−f2t, satisfy

dgt=κt(f̄1− f̄2−gt)dt+(σf1,t−ρftσf2,t)dW1t−
√

1−ρ2
ftσf2,tdW2t. (A6)

We are interested in the correlation between the average forecast, ft≡ 1

2
(f1t+f2t),

and the forecast dispersion:

Corrt[dft,dgt]=
σ2
f1,t−σ2

f2,t√
σ2
f1,t+2ρftσf1,tσf2,t+σ2

f2,t

√
σ2
f1,t−2ρftσf1,tσf2,t+σ2

f2,t

.

(A7)

Assuming that the processes σf1,t, σf2,t, and ρft are such that

Volt[dgt]=
√
σ2
f1,t−2ρftσf1,tσf2,t+σ2

f2,t≡σg
√
gt and (A8)

Corrt[dft,dgt]≡ρ, (A9)
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yields

dgt=κg(ḡ−gt)dt+σg
√
gt
(
ρdW f

t +
√

1−ρ2dW g
t

)
, (A10)

where κg≡κt, ḡ≡ f̄1− f̄2, and the Brownian motion W f
t is independent of W g

t .

Equations (A7)–(A10) show that (1) as long as f̄1>f̄2, the long-term mean of the
forecast dispersion is positive, like in the data, and (2) as long as σ2

f1,t<σ
2
f2,t, the

correlation between the average forecast and the forecast dispersion is negative, like

in the data. To summarize, the dynamics of the forecast dispersion assumed in (5)
are motivated by the belief heterogeneity forecasters may have about the long-term

mean of the expected output growth rate and about the informativeness of a public
news signal.

Appendix B. Learning

This appendix presents a proof of Proposition 1. We use the following standard result:

Theorem 1. (Liptser and Shiryaev, 2001) Consider an unobservable process ut and

an observable process st with dynamics given by

dut=[a0(t,st)+a1(t,st)ut]dt+b1(t,st)dZ
u
t +b2(t,st)dZ

s
t , (B1)

dst=[A0(t,st)+A1(t,st)ut]dt+B1(t,st)dZ
u
t +B2(t,st)dZ

s
t . (B2)

All the parameters can be functions of time and of the observable process. The
filter and the Bayesian uncertainty evolve according to (we drop the dependence of

coefficients on t and st for notational convenience):

dût=(a0 +a1ût)dt+[(b◦B)+νtA
>
1 ](B◦B)−1[dst−(A0 +A1ût)dt], (B3)

dνt

dt
=a1νt+νta

>
1 +(b◦b)−[(b◦B)+νtA

>
1 ](B◦B)−1[(b◦B)+νtA

>
1 ]>, (B4)

where

b◦b=b1b
>
1 +b2b

>
2 , (B5)

B◦B=B1B
>
1 +B2B

>
2 , (B6)

b◦B=b1B
>
1 +b2B

>
2 . (B7)

Write the dynamics of the observable variables:dlnδt
dft
dgt

=

( ft− 1

2
σ2
δ

θ̄(f̄−ft)
κg(ḡ−gt)


︸ ︷︷ ︸

A0

+

 0
f̄−ft

0


︸ ︷︷ ︸

A1

λt

)
dt+

0
0
0


︸︷︷︸
B1

dWλ
t +

σδ 0 0
0 σf 0
0 σg

√
gtρ σg

√
gt
√

1−ρ2


︸ ︷︷ ︸

B2

dW δ
t

dW f
t

dW g
t

.
(B8)

The unobservable variable λt follows:

dλt=
(

0︸︷︷︸
a0

+(−κ)︸ ︷︷ ︸
a1

λt
)
dt+ σλ︸︷︷︸

b1

dWλ
t +

[
0 0 0

]︸ ︷︷ ︸
b2

dW δ
t

dW f
t

dW g
t

. (B9)

An application of Equation (B4) yields the dynamics of the posterior uncertainty:

dνλ,t

dt
=σ2

λ−2κνλ,t−
(f̄−ft)2ν2

λ,t

σ2
f (1−ρ2)

. (B10)
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The uncertainty νλ,t does not admit a constant steady-state solution because of

the stochastic term (f̄−ft) in its dynamics. To obtain the dynamics of the filter,
compute firstdlnδt

dft
dgt

−(A0 +A1λ̂t)dt=

 σδdW δ
t

(λt−λ̂t)(f̄−ft)dt+σfdW f
t

σg
√
gtρdW

f
t +σg

√
gt
√

1−ρ2dW g
t

, (B11)

then define dŴ f
t and dŴ g

t as independent Brownian motions:

dŴ f
t ≡dW f

t +
(λt−λ̂t)(f̄−ft)

σf
dt, (B12)

dŴ g
t ≡dW g

t −
ρ√

1−ρ2

(λt−λ̂t)(f̄−ft)
σf

dt. (B13)

Replace this in (B11) to obtaindlnδt
dft
dgt

−(A0 +A1λ̂t)dt=

 σδdW δ
t

σfdŴ
f
t

σg
√
gtρdŴ

f
t +σg

√
gt
√

1−ρ2dŴ g
t

, (B14)

which can be further replaced in Equation (B3) to obtain the dynamics of the filter:

dλ̂t=−κλ̂tdt+
(f̄−ft)νλ,t

σf
dŴ f

t −
ρ√

1−ρ2

(f̄−ft)νλ,t
σf

dŴ g
t . (B15)

Appendix C. Equilibrium

The dynamics of the vector of state variables are


dδt
dft
dgt
dλ̂t
dνλ,t

=



δtft
(θ̄+λ̂t)(f̄−ft)
κg(ḡ−gt)
−κλ̂t

σ2
λ−2κνλ,t−

(f̄−ft)2ν2
λ,t

σ2
f

(1−ρ2)

dt

+


δtσδ 0 0

0 σf 0

0 σg
√
gtρ σg

√
gt
√

1−ρ2

0
(f̄−ft)νλ,t

σf
− ρ√

1−ρ2

(f̄−ft)νλ,t
σf

0 0 0


dW δ

t

dŴ f
t

dŴ g
t

.
(C1)

Proof that I(xt) is the wealth-consumption ratio The following relationship
results directly from replacing the conjectured form of the value function J in the

aggregator h(C,J) defined in Equation (2):

h(C,J)

J
=

φ

I(xt)
−βφ. (C2)

Define

Wt=CtI(xt), (C3)
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and replace (20) in the product ξtWt to obtain

ξtWt=(1−γ)exp

[∫ t

0

(
φ−1

I(xs)
−βφ

)
ds

]
C1−γ
t

1−γ [βI(xt)]
φ (C4)

=(1−γ)exp

[∫ t

0

(
φ−1

I(xs)
−βφ

)
ds

]
J. (C5)

This is a function of J and of time. Applying Itô’s lemma yields:

d(ξtWt)=(1−γ)exp

[∫ t

0

(
φ−1

I(xs)
−βφ

)
ds

][
dJ−J

(
βφ− φ−1

I(xt)

)
dt

]
. (C6)

We also know that

dJ=−h(C,J)dt+dMt, (C7)

=J

(
βφ− φ

I(xt)

)
dt+dMt, (C8)

where Mt is a martingale. The second equality follows from (C2). Replace this in

(C6):

d(ξtWt)=(1−γ)exp

[∫ t

0

(
φ−1

I(xs)
−βφ

)
ds

][
J

(
βφ− φ

I(xt)

)
dt+dMt−J

(
βφ− φ−1

I(xt)

)
dt

]
,

(C9)

=−(1−γ)exp

[∫ t

0

(
φ−1

I(xs)
−βφ

)
ds

]
J

I(xt)
dt+dM̃t (C10)

=−ξtCtdt+dM̃t, (C11)

where dM̃t is a martingale. The third equality follows from replacing the conjectured
form of the value function. The last equation can be integrated on [t,∞). Then

taking the expectation and assuming that the transversality condition holds, yields

the total wealth (claim to future output):

Wt=Et
[∫ ∞
t

ξs

ξt
Csds

]
, (C12)

which proves that I(xt) is indeed the wealth-consumption ratio.

Partial differential equation for the wealth-consumption ratio Define the
log wealth-consumption ratio:

i≡ logI. (C13)

Substituting the guess (16) into the Hamilton-Jacobi-Bellman (HJB) Equation

(15) and imposing the market-clearing condition, C=δ, yields the following PDE for
the log wealth consumption ratio:

0=
γ−1

φ

[
−f+

1

2
γσ2

δ

]
−β+e−i

+(θ̄+λ̂)(f̄−f)if−κλ̂iλ̂+

[
σ2
λ−2κνλ−

(f̄−f)2ν2
λ

σ2
f (1−ρ2)

]
iνλ

+
σ2
f

2
iff +

(f̄−f)2ν2
λ

2σ2
f (1−ρ2)

iλ̂λ̂+νλ(f̄−f)ifλ̂

+φ
σ2
f

2
i2f +φ(f̄−f)νλif iλ̂+φ

(f̄−f)2ν2
λ

2σ2
f (1−ρ2)

i2
λ̂
.

(C14)
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C.1 Levered equity

Define

Pt=DtΠ(xt)=e−βdtCηt Π(xt). (C15)

Compute

ξtPt=(1−γ)exp

(∫ t

0

(
φ−1

I(xs)
−βφ

)
ds−βdt

)
︸ ︷︷ ︸

≡∆(t)

JCη−1
t

Π(xt)

I(xt)
. (C16)

One can clearly see that if η=1 and βd=0, then Cη−1
t drops out and the last

fraction equals one, which brings us back to (C5). The case of interest is η>1.
Define

K(Ct,xt)=Cη−1
t

Π(xt)

I(xt)
(C17)

and thus,

d(ξtPt)=∆(t)

[
−KJ

(
1

I(xt)
+βd

)
dt+KdMt+JdK+(dJ)(dK)

]
, (C18)

with dMt being the same martingale used in (C8). We know that if Pt is the stock
price, then we should also have

d(ξtPt)=−ξte−βdtCηt dt+dM̂t, (C19)

where dM̂t is a martingale. This means that the drifts in (C18) and (C19) have to
be equal. This yields a partial differential equation (PDE) to be solved by Π(xt).

Replacing j(xt)≡ lnΠ(xt) results in the following PDE:

0=e−j−β−βd+

(
η− 1

ψ

)
f+

σ2
δ

2

[
γ(γ−1)

φ
+(η−1)(η−2γ)

]

+
1−φ

2

(
σ2
f i

2
f +2(f̄−f)νλif iλ̂+

(f̄−f)2ν2
λ

σ2
f (1−ρ2)

i2
λ̂

)

+
[
(θ̄+λ̂)(f̄−f)−(1−φ)(σ2

f if +(f̄−f)νλiλ̂)
]
jf

−
[
κλ̂+(1−φ)

(
(f̄−f)νλif +

(f̄−f)2ν2
λ

σ2
f (1−ρ2)

iλ̂

)]
jλ̂+

[
σ2
λ−2κνλ−

(f̄−f)2ν2
λ

σ2
f (1−ρ2)

]
jνλ

+
σ2
f

2
jff +

(f̄−f)2ν2
λ

2σ2
f (1−ρ2)

jλ̂λ̂+νλ(f̄−f)jfλ̂+
σ2
f

2
j2f +

(f̄−f)2ν2
λ

2σ2
f (1−ρ2)

j2
λ̂

+νλ(f̄−f)jf jλ̂.

(C20)

This equation has a similar structure to (C14), except that it also involves the log
wealth-consumption ratio i. It is a matter of algebra to verify that replacing η=1
and βd=0 in (C20) gives exactly (C14).

In Section I of the Internet Appendix, we describe the Chebyshev collocation
method (Judd, 1998) used to solve PDEs (C14) and (C20).
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C.2 Evaluation of the partial derivatives I and Π
In this appendix, we discuss the two inequalities in Equation (17), which we restate

here for convenience:

If >0, Iλ̂>0. (C21)

These inequalities follow directly from the guess of the value function in (16). Taking
the derivative of J with respect to any of the two state variables f and λ yields

J(·) =φJ
I(·)

I
, (C22)

with the product φJ being positive when γ>1>1/ψ.

Because of nonsatiation, expected lifetime utility must rise as investment
opportunities improve, and thus, Jf >0. Using (C22), this reasoning yields If >0.

Turning to the inequality Iλ̂>0, assuming that the agent prefers early resolution of
uncertainty, we expect that she prefers less persistence (i.e., a higher mean-reversion

speed), which yields Jλ̂>0 and Iλ̂>0. In Section II of the Internet Appendix, we

verify numerically that the sign of Iλ̂/I is indeed positive with our calibration.

C.3 Price-dividend ratio and risk-free rate
This appendix provides additional results for Section 2.2. Figure C1 plots the log

price-dividend ratio and the equilibrium risk-free rate. The log price-dividend ratio

increases with the output growth forecast ft (left panel). The relationship is almost
linear, implying that Πf/Π is positive and close to being a constant.

[Insert Figure C1 about here.]

After replacing (18) and (19) in (22), the risk-free rate becomes

rf,t= β+
ft

ψ
− γ+γψ

2ψ
σ2
δ

−(1−φ)

[
σ2
f

2

(
If

I

)2

+
IfIλ̂
I2

(f̄−ft)νλ,t+
1

2σ2
f (1−ρ2)

(
Iλ̂
I

)2

(f̄−ft)2ν2
λ,t

]
(C23)

The right panel of Figure C1 depicts the equilibrium risk-free rate, which increases

with the growth forecast ft. Uncertainty about persistence decreases the risk-free

rate, but its impact is weak.

Appendix D. Estimation

To fit our continuous-time model to the data, we first discretize the filtered dynamics

in (C1) using the following approximations

log(δt+∆/δt)=

(
ft−

1

2
σ2
δ

)
∆+σδ

√
∆v1,t+∆, (D1)

ft+∆ =e−θ̂t∆ft+
(

1−e−θ̂t∆
)
f̄+σf

√
1−e−2θ̂t∆

2θ̂t
v2,t+∆, (D2)

gt+∆ =e−κg∆gt+
(
1−e−κg∆

)
ḡ+σg

√
gt

√
1−e−2κg∆

2κg

(
ρv2,t+∆ +

√
1−ρ2v3,t+∆

)
,

(D3)
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λ̂t+∆ =e−κ∆λ̂t+
(f̄−ft)νλ,t

σf

√
1−e−2κ∆

2κ

(
v2,t+∆−

ρ√
1−ρ2

v3,t+∆

)
(D4)

νλ,t+∆ =νλ,t+

[
σ2
λ−2κνλ,t−

(
(f̄−ft)νλ,t
σf
√

1−ρ2

)2
]

∆, (D5)

where θ̂t= θ̄+λ̂t and v1,t, v2,t, v3,t are independent normally distributed random
variables with mean 0 and variance 1. The time interval is ∆=1/4. We use the

realized real GDP growth as a proxy for the output growth log(δt+∆/δt), the

mean analyst forecast for the 1-quarter-ahead real GDP growth as a proxy for the
expected growth rate ft, and the difference between the 75th and 25th percentiles

of analysts’ forecasts—the analysts’ forecast dispersion—on the 1-quarter-ahead real
GDP growth rate as a proxy for the dispersion gt. The system above shows that,

conditional on knowing the parameters of the model and the prior values (λ̂0,νλ,0),

the time series of the realized GDP growth, GDP growth forecast, and GDP growth
forecast dispersion allow us to sequentially back out the time series of the posterior

values (λ̂t,νλ,t) and the noises (v1,t,v2,t,v3,t) for t=∆,2∆,3∆.... For the initial

values, we set λ̂0 to zero, which corresponds to the long-term mean, while νλ,0 is

set to the positive root of the polynomial obtained when
dνλ,t

dt
=0, which defines a

local steady state.

The objective is to maximize the log-likelihood function L(.;.)

L(Θ;u∆,...,uN∆)=

N∑
i=1

log

(
1

(2π)3/2
√
|Σ(i−1)∆|

)
− 1

2
u>i∆Σ−1

(i−1)∆ui∆, (D6)

where Θ≡(σδ,f̄ ,σf ,σλ,θ̄,κ,ρ,σg,ḡ,κg)>, N is the number of observations, > is the

transpose operator, and |.| is the determinant operator. The three-dimensional vector
u satisfies

ut+∆≡

u1,t+∆

u2,t+∆

u3,t+∆

=

 log(δt+∆/δt)−
(
ft− 1

2
σ2
δ

)
∆

ft+∆−e−θ̂t∆ft−
(

1−e−θ̂t∆
)
f̄

gt+∆−e−κg∆gt−(1−e−κg∆)ḡ

. (D7)

Therefore, the conditional expectation and conditional variance-covariance matrix of

ut+∆ are

Et(ut+∆)=

0

0
0

 (D8)

Σt≡Vart(ut+∆) (D9)

=


σ2
δ∆ 0 0

0 σ2
f

1−e−2θ̂t∆

2θ̂t
σg
√
gt

√
1−e−2κg∆

2κg
ρσf

√
1−e−2θ̂t∆

2θ̂t

0 σg
√
gt

√
1−e−2κg∆

2κg
ρσf

√
1−e−2θ̂t∆

2θ̂t
σ2
ggt

1−e−2κg∆

2κg

.
(D10)

D.1 Descriptive statistics of the state variables
Table D1 reports statistics describing the level, time variation, and range of the

state variables. The growth rate forecast ft is 2.6% on average and fluctuates mostly
between −1% to 6%. The demeaned mean-reversion speed λ̂t varies strongly over
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time, fluctuating mostly between −0.7 and 0.7. The uncertainty about persistence

νλ,t also varies substantially, fluctuating mostly between 0.4 and 1. Overall, these
results suggest that the degree of persistence clearly fluctuates over time and suggests

a relatively high level of uncertainty about it, on average. Similarly, persistence risk

exhibits strong variations, although its mean is close to zero on average.

[Insert Table D1 about here.]

[Insert Table D2 about here.]

Table D2 documents the relative contribution of the uncertainty about persistence
and the output growth gap in explaining the variation in persistence risk. To measure

the contribution of uncertainty about persistence, we separate bad (ft<f̄) versus

good (ft>f̄) times. The rationale is that the relation between persistence risk and
νλ,t is expected to change sign depending on the output growth gap, which can be

positive or negative. Specifically, the relation should be positive in bad times, as νλ,t
multiplies f̄−ft>0, and negative in good times, as νλ,t multiplies f̄−ft<0.

Table D2 shows that uncertainty about persistence explains 42.1% of the variation

in persistence risk. The conditional analysis indicates that the contribution is
relatively stronger in bad (24.2%) than in good (17%) times. All coefficients are

statistically significant and have the expected signs. When we include the output

growth gap in the regression, the overall explanatory power becomes 91.6%. These
results suggest that uncertainty about persistence and the output growth gap

approximately explain an equal fraction of the variation in persistence risk.

Appendix E. Data Description

Real GDP growth rate and forecast data We proxy the output process with the

realized Gross Domestic Product (GDP). We compute the log growth rate of the real
quarterly GDP over the period 1968Q4–2016Q4. We consider the mean real GDP

growth forecast for the next quarter from the Survey of Professional Forecasters

as a measure of expected real GDP growth. We use the cross-sectional dispersion
(75th percentile minus 25th percentile) of the real GDP growth forecast for the next

quarter from the Survey of Professional Forecasters as a measure of dispersion. The

first forecast observation consists of the expected real GDP growth rate for 1969Q1,
as released in 1968Q4. The reported growth forecasts are annualized.

Realized and forecasted GDP data are seasonally adjusted. Real GDP growth and
forecast data are obtained from the Federal Reserve Bank of Philadelphia. These

series can be retrieved using the following link:

• Real GDP growth realizations and forecasts:

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-

of-professional-forecasters/data-files/rgdp

Real risk-free rate We compute the real risk-free rate as the 3-month nominal
yield adjusted by the expected inflation rate over the next 3 months. Like in Beeler

and Campbell (2012), we first take the nominal yield on a 3-month Treasury bill y3,t

in month t and subtract the 3-month inflation πt,t+3 from period t to t+3 to form
a measure of the ex post real 3-month interest rate. This is the dependent variable

in the predictive regression below:

y3,t−πt,t+3 =β0 +β1y3,t+β2πt−12,t+εt+3 (E1)
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where the independent variables are the inflation over the previous year πt−12,t

divided by four and the 3-month nominal yield y3,t. The predicted value for the
regression in month t gives the ex ante risk-free rate for month t+1. Our quarterly

measure of the real risk-free rate is the annualized value at the beginning of the

quarter, which we denote by rf,t.
The nominal yield is the 3-month Treasury-bill secondary market rate, which we

continuously compound as follows: y3,t=ln(1+y3,t,obs/100)/4. Inflation is computed

as the monthly log growth rate of the Consumer Price Index (CPI) from the Bureau
of Labor Statistics, which is seasonally adjusted. Both series are at the monthly

frequency. The data can be retrieved from the Federal Reserve Bank of St. Louis,

using the following links:

• Three-month Treasury-bill rate : https://fred.stlouisfed.org/series/TB3MS
• Consumer Price Index : https://fred.stlouisfed.org/series/CPIAUCSL

Stock prices and dividends We compute the stock market price index and extract
the dividends using CRSP data. The stock price index in month t is constructed as:

Pt=Pt−1(1+RnoD,t) (E2)

where RnoD,t denotes the return of a value-weighted index excluding distributions

in month t.

The monthly dividend is given by

Dt=Pt

(
1+RD,t

1+RnoD,t
−1

)
(E3)

where RD,t denotes the return of a value-weighted index including distributions in
month t.

The quarterly dividend is the sum of dividends within a quarter, which are not
seasonally adjusted. We then calculate the log quarter-over-quarter growth rate of

dividends. Dividend growth is converted from nominal to real terms using the CPI.

We thus subtract log inflation to form real growth rates.
The price-dividend ratio is the price in the last month of the quarter divided by the

sum of dividends paid in the last 12 months. We use the series of the value-weighted

index including distributions (VWRETD) and the value-weighted index excluding
distributions (VWRETX) from CRSP, which cover NYSE, Amex, and Nasdaq data.

Stock return volatility Stock return volatility is the volatility of real stock returns

computed at the quarterly frequency. We first fit an AR(1) process on the quarterly
log return of the stock price index and take the residuals. We then obtain the

conditional volatility estimate, denoted by V olR,t, with the exponential GARCH(1,1)

of (Nelson, 1991). We finally annualize the series. We use the quarterly value-weighted
market price index including distributions from CRSP.

Realized and expected excess stock returns We first compute the quarterly
real excess stock returns by subtracting the real risk-free rate from real returns. The

real return is the log return of the market price index deflated by the CPI, whereas

the real risk-free rate is constructed like in Section Appendix E. The realized real
excess stock return RX,t in quarter t is thus given by:

RX,t=ln(1+RD,t)−πt−1,t−rf,t (E4)

where quarterly inflation πt−1,t is the log growth rate of the CPI in the final month

of the current quarter over the final month in the previous quarter. We use the

Consumer Price Index from the Bureau of Labor Statistics, which is seasonally
adjusted.
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To compute the expected excess returns, we regress the returns RX,t on the lagged

dividend yield (measured at time t−1), the lagged default premium (Baa yield
minus the 10-year government bond yield), and stock return volatility. The estimated

expected real excess return in quarter t is the fitted value at time t, R̂X,t. We then

annualize the series. This approach follows Fama and French (1989)’s measurement
procedure for estimating expected returns.

The default premium is defined as the Moody’s seasoned Baa corporate bond yield

relative to the yield on a 10-year constant-maturity Treasury, as available from the
Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/BAA10YM).

The Sharpe ratio is given by the expected real excess stock returns R̂X,t divided by

the volatility of real stock returns V olR,t. Both series are at the quarterly frequency.
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Tables

Table 1
Parameter estimates

Parameter Symbol Value
Volatility of output growth σδ 0.0140∗∗∗

(28.31)

Long-term growth rate f̄ 0.0272∗∗∗

(13.43)

Volatility of growth forecast σf 0.0242∗∗∗

(31.98)

Long-term reversion speed θ̄ 1.2947∗∗∗

(10.98)

Volatility of reversion speed σλ 0.7809∗∗∗

(8.12)

Reversion speed of reversion speed κ 0.2946∗∗∗

(9.12)

Correlation between mean forecast and forecast dispersion ρ −0.1613∗∗∗

(10.35)

Long-term dispersion ḡ 0.0137∗∗∗

(6.81)

Reversion speed of dispersion κg 0.8348∗∗∗

(6.80)

Volatility of dispersion σg 0.0935∗∗∗

(17.57)

This table reports the estimates of the model parameters, obtained
using the maximum likelihood estimation, for the period Q4:1968 to
Q4:2016. t-statistics are reported in parentheses. *p<.1; **p<.05;
***p<.01.
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Table 2
Descriptive analysis of asset pricing moments

Variable Mean Std dev. Median 5-percentile 95-percentile

Risk premium

Data 0.0447 0.0574 0.0419 -0.0342 0.1515

Model 0.0607 0.0564 0.0467 0.0264 0.1826

Stock return volatility

Data 0.1708 0.0443 0.1573 0.1263 0.2602

Model 0.1980 0.0730 0.1830 0.1347 0.3774

Sharpe ratio

Data 0.2333 0.2993 0.2446 -0.2766 0.7366

Model 0.2751 0.0859 0.2555 0.1990 0.4797

log (P/D)

Data 3.6390 0.4021 3.6304 3.0266 4.3087

Model 3.4219 0.1499 3.4432 3.1501 3.5995

Real risk-free rate

Data 0.0071 0.0094 0.0073 -0.0231 0.0393

Model 0.0343 0.0119 0.0348 0.0088 0.0539

This table reports the unconditional asset pricing moments in the
model and in the data. The statistics are based on quarterly data
and are annualized. All values are in real terms. Appendix E details
the construction of the empirical moments. Stock prices represent
the value-weighted CRSP index, and the sample spans the period
Q1:1969–Q4:2016.
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Table 3
Empirical versus model-implied asset pricing quantities

Risk Stock return Sharpe log (P/D) Risk-free
premium volatility ratio rate

Constant 0.023∗∗∗ 0.138∗∗∗ 0.023 1.605∗∗∗ 0.002
t-stat 2.823 12.097 0.279 3.467 0.507

Slope 0.363∗∗∗ 0.168∗∗∗ 0.763∗∗∗ 0.594∗∗∗ 0.143
t-stat 2.680 2.877 2.640 4.336 1.217

R-squared .127 .077 .048 .049 .008
N 192 192 192 192 192

This table reports the relationships between the model-implied asset
pricing quantities and their empirical counterparts. Observed moments
are regressed on model-implied moments. The t-statistics are computed
with Newey and West (1987) standard errors. *p<.1; **p<.05;
***p<.01. Appendix E details the construction of the empirical
moments. Stock prices represent the value-weighted CRSP index, and
the sample spans the period Q1:1969–Q4:2016.
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Table 4
Conditional asset pricing moments

High pers. risk Low pers. risk High-minus-low

Variable Mean SD Mean SD Mean diff. SD diff.
Risk premium

Data 0.0547 0.0652 0.0346 0.0466 0.0201∗∗ 0.0187∗∗∗

Model 0.0797 0.0742 0.0416 0.0124 0.0381∗∗∗ 0.0618∗∗∗

Stock return volatility
Data 0.1814 0.0524 0.1602 0.0310 0.0212∗∗∗ 0.0214∗∗∗

Model 0.2289 0.0907 0.1670 0.0237 0.0619∗∗∗ 0.0670∗∗∗

Sharpe ratio
Data 0.2692 0.3226 0.1973 0.2711 0.0718∗ 0.0515∗∗

Model 0.3062 0.1074 0.2441 0.0367 0.0621∗∗∗ 0.0707∗∗∗

This table reports the asset pricing moments conditional on persistence
risk. The sample is split into two parts based on the median of
(f̄−ft)νλ,t. High values correspond to periods of high persistence
risk, whereas low values reflect times of low persistence risk. The
means and standard deviations (SD) are based on quarterly data and
are annualized. *p<.1; **p<.05; ***p<.01. Stock prices represent
the value-weighted CRSP index, and the sample spans the period
Q1:1969–Q4:2016.
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Table 5
Asset pricing moments and persistence risk

Risk premium Return volatility Sharpe ratio

Model Data Model Data Model Data

A. Linear relationship

PRt 3.927∗∗∗ 1.765∗∗∗ 5.608∗∗∗ 1.613∗∗∗ 5.845∗∗∗ 5.660∗∗

t-stat 5.529 3.029 7.444 4.739 6.032 2.471

R-squared .422 .082 .512 .115 .403 .031

N 192 192 192 192 192 192

B. Quadratic relationship

PRt 2.333∗∗∗ 0.992∗∗ 3.696∗∗∗ 1.282∗∗∗ 3.372∗∗∗ 2.297

t-stat 7.419 2.551 9.956 4.171 6.619 1.184

PR2
t 232.8∗∗∗ 112.8∗∗∗ 279.2∗∗∗ 48.35∗∗ 361.0∗∗∗ 491.0∗∗∗

t-stat 7.944 3.049 10.362 2.075 10.255 3.611

R-squared .755 .158 .798 .139 .748 .084

N 192 192 192 192 192 192

This table reports the relations between the asset pricing moments
and persistence risk, which is defined by PRt≡(f̄−ft)νλ,t. N is the
number of observations. The t-statistics are computed with Newey and
West (1987) standard errors. *p<.1; **p<.05; ***p<.01. Appendix
E details the construction of the empirical moments. Stock prices
represent the value-weighted CRSP index, and the sample spans the
period Q1:1969–Q4:2016.
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Table 6
U-shaped relationship between asset pricing moments and persistence risk

Risk premium Return volatility Sharpe ratio

Model Data Model Data Model Data

A. Low persistence risk (bottom quartile)

PRt -1.256∗∗ -3.350∗∗∗ -1.639 -0.426 -3.868∗∗ -20.63∗∗∗

t-stat -2.214 -3.456 -1.601 -0.489 -2.453 -3.271

R-squared .120 .142 .062 .005 .139 .143

N 48 48 48 48 48 48

B. Persistence risk (remaining observations)

PRt 7.108∗∗∗ 3.185∗∗∗ 9.685∗∗∗ 2.406∗∗∗ 11.17∗∗∗ 11.98∗∗∗

t-stat 7.783 3.380 11.99 4.430 11.14 3.421

R-squared .669 .139 .770 .132 .738 .075

N 144 144 144 144 144 144

This table reports the U-shaped relationship between the asset pricing
moments and persistence risk, defined as PRt≡(f̄−ft)νλ,t. Panel
A shows the results for low persistence risk (bottom quartile), and
panel B reports results for the remaining observations (top-three
quartiles of persistence risk). N is the number of observations. The
t-statistics are computed with Newey and West (1987) standard errors.
*p<.1; **p<.05; ***p<.01. Appendix E details the construction of the
empirical moments. Stock prices represent the value-weighted CRSP
index, and the sample spans the period Q1:1969–Q4:2016.
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Table 7
Asset pricing moments and uncertainty about persistence

Risk premium Return volatility Sharpe ratio

Model Data Model Data Model Data

A. Uncertainty about persistence

νλ,t -0.099∗∗∗ -0.119∗∗∗ -0.125∗∗∗ -0.056∗∗∗ -0.172∗∗∗ -0.648∗∗∗

t-stat -3.872 -6.239 -4.025 -3.693 -4.804 -6.828

R-squared .122 .170 .117 .063 .159 .186

N 192 192 192 192 192 192

B. Asymmetric impact of uncertainty about persistence

νλ,t -0.029∗∗∗ -0.103∗∗∗ -0.039∗∗ -0.042∗∗ -0.090∗∗∗ -0.592∗∗∗

t-stat -3.330 -4.235 -2.466 -2.424 -3.668 -4.228

νλ,t1ft<f̄ -0.118∗∗∗ -0.028 -0.148∗∗∗ -0.024 -0.140∗∗ -0.101

t-stat -3.121 -0.789 -3.316 -0.854 -2.538 -0.543

R-squared .262 .203 .312 .111 .294 .201

N 192 192 192 192 192 192

C. Uncertainty about persistence and economic conditions

νλ,t -0.080∗∗∗ -0.111∗∗∗ -0.100∗∗∗ -0.050∗∗∗ -0.146∗∗∗ -0.622∗∗∗

t-stat -4.864 -6.248 -5.124 -3.190 -5.782 -6.826

ft -2.313∗∗∗ -0.950∗∗∗ -3.201∗∗∗ -0.724∗∗∗ -3.343∗∗∗ -3.308∗∗∗

t-stat -6.238 -3.250 -8.390 -3.464 -6.907 -2.958

R-squared .579 .244 .638 .136 .571 .219

N 192 192 192 192 192 192

This table reports the relationships between the asset pricing moments
and uncertainty about persistence νλ,t. Panel A reports the univariate
regression results. Panel B interacts uncertainty about persistence with
a dummy that equals 1 in bad times (ft<f̄) and 0 otherwise (the
dummy is individually included in the regression although its coefficient
is unreported). Panel C controls for the growth forecast ft. N is the
number of observations. The t-statistics are computed with Newey and
West (1987) standard errors. *p<.1; **p<.05; ***p<.01. Appendix E
details the construction of the empirical moments. Stock prices represent
the value-weighted CRSP index, and the sample spans the period
Q1:1969–Q4:2016.
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Table 8
Predictability of excess returns with persistence risk

A. Predictability (model)

Excess return

1Y 3Y 5Y 7Y

PRt 0.806 13.89∗∗∗ 11.62∗∗ 14.86∗∗∗

t-stat 0.318 3.350 2.363 5.495

R-squared .001 .157 .089 .102

N 188 180 172 164

B. Predictability (data)

Excess return

1Y 3Y 5Y 7Y

2.194 5.944 7.979∗∗ 10.06∗∗∗

1.422 1.562 2.308 3.808

0.013 0.042 0.053 0.094

188 180 172 164

This table shows the predictability of cumulative future excess stock
returns with persistence risk, as measured by PRt=(f̄−ft)νλ,t. Panel
A reports the regression estimates in the model, and panel B reports
the results based on empirical data. Each column represents a different
forecast horizon K, and N is the number of observations. t-statistics are
computed with Newey and West (1987) standard errors with 2(K−1)
lags. *p<.1; **p<.05; ***p<.01. Appendix E details the construction
of the empirical moments. Stock prices represent the value-weighted
CRSP index, and the sample spans the period Q1:1969–Q4:2016.
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Table 9
Predictability of excess returns with persistence risk: Asymmetry

A. Predictability (model)

Excess return

1Y 3Y 5Y 7Y

Low informative times (ft close to f̄)

PRt -4.822 13.48 16.39 21.92

t-stat -0.619 1.016 1.326 1.322

High informative times (ft far from f̄)

PRt 1.293 13.92∗∗∗ 11.24∗∗ 14.33∗∗∗

t-stat 0.505 3.323 2.342 5.255

R-squared .005 .157 .090 .104

N 188 180 172 164

B. Predictability (data)

Excess return

1Y 3Y 5Y 7Y

-4.419 7.261 -6.982 -0.955

-0.753 0.949 -0.706 -0.124

2.765∗ 5.833 9.194∗∗ 10.89∗∗∗

1.827 1.446 2.544 4.092

0.024 0.043 0.068 0.103

188 180 172 164

This table reports the return predictability of persistence risk during
high versus low informative times. Persistence risk is given by
PRt=(f̄−ft)νλ,t. High informative times correspond to observations
when the growth forecast ft falls into its bottom or top quintiles.
Low informative times include the remaining observations. Panel A
reports the results in the model, and panel B reports those in the data.
Each column represents a different forecast horizon K, and N is the
number of observations. t-statistics are computed with Newey and West
(1987) standard errors with 2(K−1) lags. *p<.1; **p<.05; ***p<.01.
Appendix E details the construction of the empirical moments. Stock
prices represent the value-weighted CRSP index, and the sample spans
the period Q1:1969–Q4:2016.

48



“AHaJ1011” — 2018/10/11 — 4:50 — page 49 — #49i
i

i
i

i
i

i
i

Asset Pricing with Persistence Risk

Table 10
Predictive power (R2) of persistence risk for excess returns

A. Predictive power (model)

1Y 3Y 5Y 7Y

High informative times (ft far from f̄) 0.000 0.241 0.119 0.198

Low informative times (ft close to f̄) 0.006 0.085 0.064 0.040

Unconditional 0.001 0.157 0.089 0.102

B. Predictive power (data)

1Y 3Y 5Y 7Y

High informative times (ft far from f̄) 0.047 0.105 0.156 0.267

Low informative times (ft close to f̄) 0.004 0.006 0.000 0.002

Unconditional 0.013 0.042 0.053 0.094

This table reports the conditional predictive power of persistence risk.
Predictive power is measured with the R2 of the regression of future
excess returns on persistence risk, defined as (f̄−ft)νλ,t. We run
separate regressions for high informative times, which correspond to
times when ft is far from f̄ (bottom and top quintiles), and low
informative times, which correspond to times when ft is close to f̄ .
Panel A reports the results in the model, and panel B reports those in
the data. Each column represents a different forecast horizon K. The
construction of excess returns is discussed in Appendix E. Stock prices
represent the value-weighted CRSP index, and the sample spans the
period Q1:1969–Q4:2016.
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Table 11
Return predictability with the price-dividend ratio

A. Predictability (model)

Excess return

1Y 3Y 5Y 7Y

Low informative times (ft close to f̄)

Log (P/D) -0.386∗∗ -0.920∗∗∗ -0.935∗∗∗ -1.152∗∗∗

t-stat -2.374 -3.639 -4.416 -8.132

High informative times (ft far from f̄)

Log (P/D) -0.386∗∗ -0.934∗∗∗ -0.942∗∗∗ -1.162∗∗∗

t-stat -2.351 -3.658 -4.279 -7.710

R-squared 0.061 0.177 0.148 0.159

N 188 180 172 164

B. Predictability (data)

Excess return

1Y 3Y 5Y 7Y

-0.114∗∗ -0.209∗∗∗ -0.324∗∗∗ -0.366∗∗∗

-2.027 -2.681 -4.429 -4.798

-0.140∗∗ -0.249∗∗∗ -0.396∗∗∗ -0.419∗∗∗

-2.226 -2.776 -4.728 -4.949

0.078 0.100 0.182 0.207

188 180 172 164

This table reports the return predictability of the log price-dividend
ratio during high versus low informative times. High informative times
correspond to observations when the growth forecast ft belongs to its
bottom or top quintiles. Low informative times include the remaining
observations. Panel A reports results in the model, and panel B reports
those in the data. Each column represents a different forecast horizon
K, and N is the number of observations. t-statistics are computed
with Newey and West (1987) standard errors with 2(K−1) lags.
*p<.1; **p<.05; ***p<.01. Appendix E details the construction of the
empirical moments. Stock prices represent the value-weighted CRSP
index. The sample spans the period Q1:1969–Q4:2016.
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Table D1
Descriptive statistics of the state variables

Mean SD 5th percentile 95th percentile

log
(
δt+1/4

δt

)
0.0269 0.0162 −0.0330 0.0777

ft 0.0256 0.0166 −0.0098 0.0553

λ̂t 0.0456 0.4055 −0.6728 0.7076
νλ,t 0.7612 0.1991 0.4258 0.9929
PRt 0.0009 0.0093 −0.0146 0.0189

This table reports the descriptive statistics of the state variables in the

economy: the log of real output growth
(
δt+1/4

δt

)
, the forecast ft, the

filtered demeaned mean-reversion speed λ̂t, and the uncertainty about
the mean-reversion speed νλ,t.
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Table D2
Persistence risk decomposition

PRt PRt

Good times Bad times All times All times

νλ,t1ft>f̄ -0.008∗∗∗ -0.008∗∗∗ -0.002∗∗∗

t-stat -10.08 -10.08 -5.857

νλ,t1ft<f̄ 0.008∗∗∗ 0.008∗∗∗ 0.003∗∗∗

t-stat 9.457 9.457 8.329

(f̄−ft) 0.465∗∗∗

t-stat 14.92

R-squared .170 .242 .421 .916

N 192 192 192 192
This table reports the relations between persistence risk, which is defined
by PRt≡(f̄−ft)νλ,t, and its components: (f̄−ft) and νλ,t. N is the
number of observations. The t-statistics are computed with Newey and
West (1987) standard errors. *p<.1; **p<.05; ***p<.01. The sample
spans the period Q1:1969–Q4:2016.
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Figures
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(a) Demeaned mean-reversion speed, λ̂t
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(b) Uncertainty about persistence, νλ,t
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(d) Persistence risk, (f̄ − ft)νλ,t

Figure 1
Historical paths of the state variables
This figure plots the time series of the state variables, from Q4:1968 to Q4:2016. Panel
(a) reports the filtered demeaned mean-reversion speed of the output growth forecast.
Panel (b) reports the uncertainty about persistence. Panel (c) reports the 1-quarter-ahead
forecast of output growth. Panel (d) reports persistence risk.
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(a) Volatility

νλ = 0.52
νλ = 1.03
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(b) Risk premium
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(c) Sharpe ratio

Figure 2
Asset pricing with learning about persistence
This figure shows how the stock return volatility, the risk premium, and the Sharpe ratio

vary with the economic growth forecast. For the three panels, we fix λ̂t=0 and plot asset
pricing moments against the growth forecast ft for three different values of νλ,t (the upper

bound of νλ,t is σ2
λ/(2κ)=1.03). We use the calibration provided in Table 1.
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(a) Log P-D ratio
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(b) Risk-free rate

Figure C1
Behavior of the price-dividend ratio and risk-free rate with learning about
persistence
This figure shows how the price-dividend ratio and the equilibrium risk-free rate vary with

the forecast ft. For the two plots, we fix λ̂t=0. Unless otherwise specified, we consider
the calibration provided in Table 1.
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Figure Legends
Figure 1

Historical paths of the state variables

This figure plots the time series of the state variables, from Q4:1968 to Q4:2016.
Panel (a) reports the filtered demeaned mean-reversion speed of the output growth

forecast. Panel (b) reports the uncertainty about persistence. Panel (c) reports the

1-quarter-ahead forecast of output growth. Panel (d) reports persistence risk.

Figure 2
Asset pricing with learning about persistence

This figure shows how the stock return volatility, the risk premium, and the Sharpe

ratio vary with the economic growth forecast. For the three panels, we fix λ̂t=0 and
plot asset pricing moments against the growth forecast ft for three different values

of νλ,t (the upper bound of νλ,t is σ2
λ/(2κ)=1.03). We use the calibration provided

in Table 1.

Figure C1
Behavior of the price-dividend ratio and risk-free rate with learning about

persistence

This figure shows how the price-dividend ratio and the equilibrium risk-free rate vary
with the forecast ft. For the two plots, we fix λ̂t=0. Unless otherwise specified, we

consider the calibration provided in Table 1.
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Internet Appendix for
“Asset Pricing with Persistence Risk”

Daniel Andrei, Michael Hasler, and Alexandre Jeanneret

This Appendix is divided in four sections. In Section I, we describe
the Chebyshev collocation method that we employ to solve the
partial differential equations (C14) and (C20). In Section II, we verify
numerically the inequalities Iλ̂/I >0 and Πλ̂/Π>0. In Section III
we compare our model to several alternative specifications. Finally,
in Section IV we present additional empirical results to complement
Section 3 of the paper.

I. Numerical solution for the PDEs (C14) and (C20)

The PDE for i(f,λ̂,νλ) is solved numerically using the Chebyshev
collocation method (Judd, 1998). That is, we approximate the function

i(f,λ̂,νλ) as follows:

i(f,λ̂,νλ)≈P (f,λ̂,νλ)=

I∑

i=0

K∑

k=0

L∑

l=0

ai,k,lTi[f ]×Tk[λ̂]×Tl[νλ], (5)

where Tm[·] is the Chebyshev polynomial of order m. The interpolation
nodes are obtained by meshing the scaled roots of the Chebyshev
polynomials of order I+1, K+1, and L+1. We scale the roots of the
Chebyshev polynomials of order I+1, K+1, and L+1 such that they
cover approximately 95% of the unconditional distributions of the 3 state
variables.

The polynomial P (f,λ̂,νλ) and its partial derivatives are then
substituted into the PDE, and the resultant expression is evaluated at
the interpolation nodes. This yields a system of (I+1)×(K+1)×(L+
1) equations with (I+1)×(K+1)×(L+1) unknowns (the coefficients
ai,k,l). This system of equations is solved numerically.

Once we solve for the wealth-consumption ratio i, we replace it in
Equation (C20); then we solve for the price-dividend ratio using the
same procedure.

We generate a grid of 113 points. The mean squared PDE residuals
over the set of 1,331 interpolation nodes is of order 10−8. That is, the
Chebyshev collocation method yields an accurate solution to the PDE.

II. Numerical verification of Equation (17)

We verify numerically that the sign of Iλ̂/I is indeed positive with our
calibration. We tabulate in the upper part of Table I values of Iλ̂/I

1
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Table I
Values of the coefficients I

λ̂
/I (above) and Π

λ̂
/Π (below)

aaaaaa
f

λ̂ -0.6 -0.3 0 0.3 0.6

-0.02000 0.00132 0.00474 0.00663 0.00733 0.00718
-0.01000 0.00347 0.00560 0.00658 0.00668 0.00620
0.00000 0.00395 0.00530 0.00578 0.00562 0.00508
0.01000 0.00342 0.00428 0.00452 0.00433 0.00388
0.02000 0.00236 0.00288 0.00304 0.00292 0.00265
0.03000 0.00119 0.00138 0.00151 0.00152 0.00143
0.04000 0.00026 0.00005 0.00010 0.00020 0.00028

aaaaaa
f

λ̂ -0.6 -0.3 0 0.3 0.6

-0.02000 0.14000 0.18000 0.18900 0.18200 0.16700
-0.01000 0.14000 0.17000 0.17400 0.16400 0.14600
0.00000 0.12700 0.14800 0.14900 0.13900 0.12200
0.01000 0.10500 0.11900 0.11800 0.11000 0.09660
0.02000 0.07630 0.08500 0.08500 0.07950 0.07100
0.03000 0.04850 0.05190 0.05250 0.05050 0.04640
0.04000 0.02860 0.02440 0.02410 0.02430 0.02360

The tables report numerical evaluations of Iλ̂/I and Πλ̂/Π. For both

panels, we fix νλ,t=0.52 and build a grid for ft and λ̂t. Unless otherwise
specified, we consider the calibration provided in Table 1.

for a two-dimensional grid on the state variables ft and λ̂t. The results
indicate that Iλ̂/I tends to decrease in good times (i.e., a larger ft). The
fact that Iλ̂/I becomes smaller in good times is related to the following
effect: positive shocks in good times signal not only higher persistence
(which is bad news for the agent) but also a longer economic boom
(which is good news). However, because the term Iλ̂/I remains positive
in good times, the second effect appears to be small.

The lower part of Table I tabulates values for the price-dividend ratio
Π. We find coefficients Πλ̂/Π that are an order of magnitude higher than
Iλ̂/I. The coefficients are positive at all times and also tend to decrease
in good times.

III. Alternative setups

In this section, we compare our model with several alternative
specifications. We analyze a model without learning in Section III.1.
In Section III.2, we consider a setup in which the agent learns about the
level of expected output growth. In Section III.3, we build a setting
with time-varying, but observable persistence. In Section III.4, we

2
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compare our model against two benchmarks that successfully deliver
a countercyclical price of risk: the habit model (Chan and Kogan, 2002)
and the long-run risk model (Bansal and Yaron, 2004).

III.1 A model without learning
We first analyze the most basic benchmark: an economy with complete
information. In this standard case, the agent observes both the aggregate
output and its expected growth:1

dδt/δt=ftdt+σδdW
δ
t (6)

dft= θ̄(f̄−ft)dt+σfdW f
t . (7)

Like in our main model, the two Brownian motions W δ
t and W f

t are
mutually independent.

The volatility of stock returns and the risk premium are given by

‖σt‖2 =η2σ2
δ +

(
σf

Πf

Π

)2

(8)

RPt=γησ2
δ +(1−φ)σ2

f

If
I

Πf

Π
. (9)

The volatility, the risk premium and the Sharpe ratio in this economy
are depicted by dashed lines in the three panels of column (a) in Figure I,
as functions of the expected growth rate ft. We use the calibration from
Table 1. For comparison, we add solid lines that represent the asset
pricing moments of our model with learning about persistence.

It is clear from the plots and directly from Eqs. (8)–(9), that a model
with perfect information does not produce any variation in asset pricing
moments.

III.2 A model with learning about the level of expected
growth

We now turn to the case with learning about the level of expected output
growth. Uncertainty about the level of expected growth is the premise
of a large incomplete information literature and therefore constitutes an
important benchmark.2

The aggregate output and the expected growth rate evolve like in (6)–
(7), but the expected growth rate ft is unobservable. The agent learns

1The closest model in the literature is Case I in Bansal and Yaron (2004).

2See Detemple (1986), Veronesi (1999), Veronesi (2000), Scheinkman and Xiong
(2003), Dumas et al. (2009), and Ai (2010), among many others. Ziegler (2003) and Pastor
and Veronesi (2009) provide comprehensive surveys of this literature.
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from output realizations.3 Standard filtering implies

df̂t= θ̄(f̄− f̂t)dt+
ν̄f
σδ
dŴ δ

t , (10)

where dŴ δ
t is the output growth innovation under the filtration of the

agent, and ν̄f is the steady-state level of uncertainty about ft:

ν̄f ≡σδ
√

(θ̄σδ)2 +σ2
f− θ̄σ2

δ . (11)

Note that the uncertainty about the level of expected output growth
converges to a stationary solution. This is a common result in most
settings with incomplete information.

The equilibrium solution follows standard steps. We write directly the
volatility of stock returns and the risk premium in this economy:

σ2
t =

(
ησδ+

ν̄f
σδ

Πf̂

Π

)2

(12)

RPt=

(
ησδ+

ν̄f
σδ

Πf̂

Π

)(
γσδ+(1−φ)

ν̄f
σδ

If̂
I

)
. (13)

Eqs. (12)–(13) show that a model with learning about the level of
expected growth does not generate fluctuations in volatility, the risk
premium, or the Sharpe ratio, beyond the fluctuations that arise from
the partial derivatives of the price-dividend ratio and of the wealth-
consumption ratio. We expect these fluctuations to be relatively weak
(they are zero with a log-linear approximation). Hence, standard models
with learning about the level of expected growth do not generate
significant time variation in asset pricing moments.4

The three plots of column (a) in Figure I confirm this result. For
these plots, we use the same calibration used in Table 1. The dotted
lines show that learning about the level of expected growth does not
generate variations in asset pricing moments.

3An alternative is to assume that the agent observes a forecast of the expected growth
rate and that this forecast is measured with error—i.e., the agent learns from two signals.
This alternative setup yields similar results. We choose the current setup to remain closer
to the existing literature.

4An exception is the class of models in which the expected growth rate follows a
process with unobservable regime shifts (Veronesi, 1999, 2000). These models successfully
generate time-varying uncertainty, volatility clustering, and time-varying expected
returns. However, the implications of these alternative models are the opposite of ours:
in Veronesi (1999), the reaction to news is high in good times and low in bad times.
Furthermore, models with regime shifts tend to generate an inverse U-shaped relationship
between fundamentals and asset pricing moments (see also Cagetti et al., 2002).
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III.3 A model with time-varying but observable persistence
We consider an alternative model in which the persistence is time
varying but observable. Starting with the two processes (3)–(4) of
our main model, this alternative specification features an additional,
observable state variable λt:

dλt=−κλtdt+σλδλdW f
t +σλ

√
1−δ2

λdW
λ
t . (14)

We allow for an exogenous correlation δλ between the expected growth
and its persistence. We consider positive values for this correlation (i.e.,
persistence increases after negative shocks). This model therefore has a
built-in asymmetry: it generates stronger persistence during bad times
and thus induces countercyclicality in asset pricing moments. Our aim
is to evaluate whether it is able to generate results that are comparable
with those obtained by a model with learning about persistence.

The price-dividend ratio in this economy Π(ft,λt) depends on two
state variables, ft and λt. Because these variables are driven by the
Brownian motions W f

t and Wλ
t , the price-dividend ratio has two

diffusion components:

σΠf =σf
Πf

Π
+δλσλ

Πλ

Π
(15)

σΠλ=
√

1−δ2
λσλ

Πλ

Π
. (16)

Assuming that δλ>0, the first diffusion term, σΠf , is larger because of
fluctuations in λt: negative expected growth shocks increase persistence,
whereas positive expected growth shocks decrease persistence; the
impact of these shocks is therefore amplified by the positive correlation
δλ. Yet a direct comparison of this diffusion term with its counterpart
in the presence of learning about persistence (Equation 26) reveals that
our key mechanism arises only when λt is unobservable. It is only in
this case that persistence risk directly enters into the diffusion of the
price-dividend ratio in Equation (26) and magnifies it during bad times.
In contrast, when λt is observable, the amplification occurs at all times.
Consequently, this model cannot generate significant asymmetry in asset
pricing moments.

Nevertheless, it might be the case that an (indirect) asymmetry arises
through the partial derivatives of the price-dividend ratio in (15)-(16).
To investigate this possibility, we solve the model for two different values
of the correlation parameter, δλ∈{0.5,1}. We use the parameters from
Table 1. The solution method follows the same steps taken in our main
model.
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In this model, the stock return volatility is

‖σt‖2 =η2σ2
δ +

(
σf

Πf

Π
+δλσλ

Πλ

Π

)2

+(1−δ2
λ)σ2

λ

(
Πλ

Π

)2

, (17)

whereas the risk premium is given by

RPt=γησ2
δ +(1−φ)×

×
[(
σf
If
I

+δλσλ
Iλ
I

)(
σf

Πf

Π
+δλσλ

Πλ

Π

)
+(1−δ2

λ)σ2
λ

Iλ
I

Πλ

Π

]
.

(18)

The three panels in column (b) of Figure I depict the results. We
plot the asset pricing moments as functions of ft for δλ∈{0.5,1}. This
alternative model delivers an asymmetry, albeit less pronounced than
the asymmetry from learning about persistence. More important, this
model does not deliver the U-shaped relationships when ft� f̄ or ft� f̄ .
This is one of the main implications of our model with learning about
persistence (Corollary 2), and is supported by the data (Tables 6 and 7).
It is therefore learning about persistence that induces strong variations
in equilibrium risk premiums and return volatility, not the fact that the
degree of persistence is time varying but observable.

III.4 Alternative models of countercyclical price of risk
We finally compare our model with two alternative explanations for the
countercyclical price of risk. The first is the model with habit formation
and heterogeneous preferences proposed by Chan and Kogan (2002).
The second is the long-run risk model with stochastic growth volatility
proposed by Bansal and Yaron (2004).

The model of Chan and Kogan (2002) (henceforth CK) belongs to a
large literature that studies habit formation.5 CK show that a setting
with heterogeneous preferences supports the assumption of Campbell
and Cochrane (1999) that the risk aversion of the representative agent is
countercyclical. When investors’ risk aversion is heterogeneous, positive
shocks transfer wealth from the more risk-averse investors to the less
risk-averse investors. Consequently, the aggregate risk aversion becomes
countercyclical. The key state variable that drives asset pricing moments
in CK is the relative consumption ωt, defined as the log-aggregate
consumption relative to the external standard of living (a low ωt
represents a bad state of the world). The three panels in column (c) of
Figure I plot asset pricing moments against the relative consumption ωt.
For these plots, we use the calibration from CK.

5See Constantinides (1990), Abel (1990), Campbell and Cochrane (1999), Menzly et al.
(2004), and Santos and Veronesi (2010).
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Figure I
Comparison with alternative models.
This figure compares the asset pricing implications of five alternative models with
the implications of our model with learning about persistence. Column (a) plots the
volatility, risk premium, and the Sharpe ratio in a model without incomplete information
(Section III.1) and in a model with learning about the level of expected growth
(Section III.2). Column (b) considers a model with time-varying but observable persistence
(Section III.3). Column (c) plots results for the heterogeneous preferences model of Chan
and Kogan (2002) (CK). Column (d) plots results for the stochastic growth volatility
for Case II in Bansal and Yaron (2004) (BYII). Unless otherwise specified, we consider
the calibration provided in Table 1. For columns (c) and (d), we use the calibrations
from CK and BYII, respectively. The variable vt is the continuous-time equivalent of the
discrete-time variable σ2

t in BYII.

Another important benchmark is the long-run risk model (Bansal
and Yaron, 2004)—an economy with a slow-moving component in
aggregate consumption and a representative agent with Epstein and Zin
(1989) preferences. Importantly, for a long-run risk model to produce
countercyclical asset pricing moments, Bansal and Yaron (2004) rely on
exogenous movements in the volatility of aggregate consumption growth,
or “fluctuating economic uncertainty.” This feature is introduced in
Case II of their model (henceforth BYII). The three panels in column (d)
of Figure I plot asset pricing moments against the volatility of
consumption growth

√
vt. For these plots, we use the calibration from

BYII.
Both the heterogeneous preferences model of CK and the long-run

risk model of BYII successfully generate a countercyclical price of risk.
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Both models have strengths and weaknesses, and a discussion of those is
beyond the scope of this paper.6 Here, we focus on the unique theoretical
predictions that our model with learning about persistence delivers. As
Figure I shows, these two alternative models do not generate (with their
original calibrations) the U-shaped relationships implied by learning
about persistence.

Furthermore, learning about persistence delivers long-horizon return
predictability with the price-dividend ratio. While the CK model does
generate a negative relationship between the price-dividend ratio and
future excess stock returns, the explanatory power of this relationship is
smaller than in the data. The BYII model generates return predictability
through the persistent variation in the volatility of consumption growth,
but the strength of the long-horizon predictability is also weaker than
in the data (Beeler and Campbell, 2012). In contrast, the strength of
return predictability in our model is the same as that found in the data.
Finally, our model features a novel source of risk that is priced in the
equity market, persistence risk. We show that persistence risk predicts
future returns, particularly around business-cycle peaks and troughs.
This unique prediction is validated in the data.

III.4.1 Term structures of equity risk and return. An additional
dimension for comparison between our model and CK and BYII is the
term structure of equity risk and return. Figure II depicts the term
structures of dividend strip return volatility, risk premium, and Sharpe
ratio in our model (column a), in the CK model (column b), and in the
BYII model (column c).

The model of learning about persistence yields term structures of
volatility and the risk premium that are flatter than those obtained in
CK and BYII. This is because the state variables in the model of learning
about persistence are significantly less persistent than those in CK and
BYII.7 van Binsbergen et al. (2012) show that the strong persistence
of the state variables in the long-run risk and habit formation models
yields markedly upward-sloping term structures of dividend strip return
volatility and the risk premium. For the Sharpe ratio, the CK model
generates a flat term structure (with a single source of risk, the risk
premium is a linear function of volatility), whereas the model of learning
about persistence and the BYII model yield increasing term structures.

6Refer to Beeler and Campbell (2012), Bansal et al. (2012), and Cochrane (2017). See
Xiouros and Zapatero (2010) for a discussion of the CK model.

7The relative consumption in CK has a half-life of approximately 12 years. The
expected growth and variance of growth in BYII have half-lives of approximately 3 years
and 4.5 years. In our model, the expected growth and the mean-reversion speed have
half-lives of approximately 6 months and 2.5 years.
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Figure II
Term structures of equity risk and return.
This figure depicts the term structures of dividend strip return volatility, the risk premium,
and the Sharpe ratio in the model of learning about persistence (column a), in the model
of Chan and Kogan (2002) (column b), and in Case II of Bansal and Yaron (2004) (column

c). For the left plots, we use the calibration provided in Table 1, and we fix λ̂t=0 and
νλ,t=0.52. For the middle and right plots, we use the calibrations from CK and BYII. The
variable ωt is the relative consumption. The variable vt is the continuous-time equivalent
of the discrete-time variable σ2

t in BYII. The upper and lower bounds for ft, ωt, and vt
correspond to the 97.5 and 2.5 percentiles of their distributions.

While the model of learning about persistence yields flatter term
structures, we admit that it is unable to generate the downward-sloping
term structures documented by van Binsbergen et al. (2012) and van
Binsbergen et al. (2013). Theoretical foundations for downward-sloping
term structures of risk include financial leverage, bounded rationality
and limited information, post-disaster recoveries, and labor relations.8

8See Belo et al. (2015), Croce et al. (2015), Hasler and Marfe (2016), and Marfè (2017),
and refer to van Binsbergen and Koijen (2017) for a recent survey on this topic.
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IV. Additional empirical results

This section reproduces the predictability analysis of the paper
(Section 3.4) with a set of control variables. The controls include the
price-dividend ratio (Fama and French, 1988), stock market volatility
(French et al., 1987), the default premium (Fama and French, 1989), and
the macro uncertainty index (Jurado et al., 2015). Table II reproduces
Table 8, Table III reproduces Table 9, and Table IV reproduces Table 11.

Table II
Predictability of excess returns with persistence risk

Panel A: Without controls

Excess return

1Y 3Y 5Y 7Y

PRt 2.194 5.944 7.979∗∗ 10.06∗∗∗

t-stat 1.422 1.562 2.308 3.808

R-squared 0.013 0.042 0.053 0.094

N 188 180 172 164

Panel B: With controls

Excess return

1Y 3Y 5Y 7Y

3.800∗ 8.240∗ 9.121∗∗∗ 11.48∗∗∗

1.865 1.889 2.922 3.045

0.216 0.239 0.313 0.316

188 180 172 164

This table shows the predictability of cumulative future excess stock
returns with persistence risk, as measured by PRt=(f̄−ft)νλ,t. Panel
A reports the regression estimates in the data (like in panel B of
Table 8), and panel B reports the results when controlling for the
log price-dividend ratio (Fama and French, 1988), the level of stock
market volatility (French et al., 1987), the default premium (Fama and
French, 1989), and the macro uncertainty index of Jurado et al. (2015).
Each column represents a different forecast horizon K, and N is the
number of observations. t-statistics are computed with Newey and West
(1987) standard errors with 2(K−1) lags. *p<.1; **p<.05; ***p<.01.
Appendix E details the construction of the empirical moments. Stock
prices represent the value-weighted CRSP index, and the sample spans
the period Q1:1969–Q4:2016.
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Table III
Asymmetric excess return predictability with persistence risk (with and
without controls)

Panel A: Without controls

Excess return

1Y 3Y 5Y 7Y

Low informative times (ft close to f̄)

PRt -4.419 7.261 -6.982 -0.955

t-stat -0.753 0.949 -0.706 -0.124

High informative times (ft far from f̄)

PRt 2.765∗ 5.833 9.194∗∗ 10.89∗∗∗

t-stat 1.827 1.446 2.544 4.092

R-squared 0.024 0.043 0.068 0.103

N 188 180 172 164

Panel B: With controls

Excess return

1Y 3Y 5Y 7Y

-5.789 5.256 -4.112 1.665

-0.891 0.982 -0.869 0.231

4.853∗∗ 8.567∗ 10.44∗∗∗ 12.42∗∗∗

2.515 1.812 2.772 3.192

0.239 0.240 0.325 0.323

188 180 172 164

This table reports the return predictability of persistence risk during
high versus low informative times in the data. Persistence risk is
given by PRt=(f̄−ft)νλ,t. High informative times correspond to
observations when the growth forecast ft falls into its bottom or top
quintiles. Low informative times include the remaining observations.
Panel A reports the results without controls (like in panel B of Table 9),
and panel B reports the results when controlling for log price-dividend
ratio, the level of stock market volatility, the default premium, and the
macro uncertainty index of Jurado et al. (2015). Each column represents
a different forecast horizon K, and N is the number of observations.
t-statistics are computed with Newey and West (1987) standard errors
with 2(K−1) lags. *p<.1; **p<.05; ***p<.01. Appendix E details
the construction of the empirical moments. Stock prices represent
the value-weighted CRSP index, and the sample spans the period
Q1:1969–Q4:2016.
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Table IV
Predictability of excess returns with the price-dividend ratio (with and without
controls)

Panel A: Without controls

Excess return

1Y 3Y 5Y 7Y

Low informative times (ft close to f̄)

Log(P/D) -0.114∗∗ -0.209∗∗∗ -0.324∗∗∗ -0.366∗∗∗

t-stat -2.027 -2.681 -4.429 -4.798

High informative times (ft far from f̄)

Log(P/D) -0.140∗∗ -0.249∗∗∗ -0.396∗∗∗ -0.419∗∗∗

t-stat -2.226 -2.776 -4.728 -4.949

R-squared .078 .100 .182 .207

N 188 180 172 164

Panel B: With controls

Excess return

1Y 3Y 5Y 7Y

-0.176∗∗∗ -0.291∗∗∗ -0.413∗∗∗ -0.412∗∗∗

-2.705 -3.650 -4.408 -3.877

-0.194∗∗∗ -0.322∗∗∗ -0.476∗∗∗ -0.461∗∗∗

-2.788 -3.812 -4.472 -4.302

0.207 0.205 0.344 0.281

188 180 172 164

This table reports the return predictability of the log price-dividend
ratio during high versus low informative times in the data. High
informative times correspond to observations when the growth forecast
ft falls into its bottom or top quintiles. Low informative times include
the remaining observations. Panel A reports the results without
controls (like in panel B of Table 11), and panel B reports the results
when controlling for the level of stock market volatility, the default
premium, and the macro uncertainty index of Jurado et al. (2015).
Each column represents a different forecast horizon K, and N is the
number of observations. t-statistics are computed with Newey and West
(1987) standard errors with 2(K−1) lags. *p<.1; **p<005; ***p<.01.
Appendix E details the construction of the empirical moments. Stock
prices represent the value-weighted CRSP index, and the sample spans
the period Q1:1969–Q4:2016.
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