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Abstract

We introduce a model of the economy as a social network. Two agents are linked to

the extent that they transact with each other. This generates well-defined topological

notions of location, neighborhood and closeness. We investigate the implications of our

model for monetary economics. When a central bank increases the money supply, it

must inject the money somewhere in the economy. The agent closest to the location

where money is injected is better off, and the one furthest is worse off. Symmetrically,

any decrease in the money supply redistributes purchasing power in the other direction.

This redistribution channel is independent from other previously studied channels. Our

model’s theoretical predictions are supported by the data.
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1 Introduction

Monetary policy unevenly affects economic agents. For example, the expansion of the Fed’s

balance sheet during the great recession affected investors differently, depending on the

type of securities they held at that time. Arguably, this economic intervention changed the

welfare distribution in the economy. In this paper, we study the redistributive effects of

monetary policy in a economy with interconnected agents and show that monetary policy

has heterogeneous effects in the cross section. We develop a theoretical framework in which

firms are part of a trade network. We use this framework to measure the economic distance

from the Fed and to identify economic agents most and least affected by monetary policies.

We model the economy as a network of trading relations. Agents’ connections are based

on how much they trade with each other. However, agents are different from each other

because they hold different trading relations. Some may have strong trading relationships

with one another, while others may have trading relationships that are not as strong. This

network structure introduces notions of location, neighborhood and distance. More impor-

tantly, how and where monetary policies take place matters.

The implications of monetary policies for redistribution is source of much debate.1 The

typical argument lies on agents’ differences in cash holdings. Money supply expansion trans-

fers real consumption from agents with large cash balances to those with lower balances. This

happens because money is worth less after the intervention, hurting those with large cash

balances. Our economic channel of redistribution is different. We assume that a monetary

intervention directly affects some economic agents. However, it indirectly affects economic

agents close to those directly affected, which in turn will affect other economic agents close to

them, and so on. This propagation mechanism is similar to the propagation of productivity

shocks across sector linkages in Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012).

In our setting, monetary policy shocks propagate along economic linkages between agents,

leading to real redistributive effects in the cross section.

Monetary policies have to be initiated somewhere in economy, and, moreover, some eco-

nomic agents ought to be directly affected. For institutional and practical reasons, the

central bank is not able uniformly implement a policy as a Friedman helicopter drop. In

fact, only a few select institutions have direct dealings with the central bank. Most investors

do not participate in the primary market, and securities go through a chain of intermediaries

before reaching the final investor. The money injected into the economy by the central bank

1See, among others, D’Amico and King (2010), Doh (2010), Fuster and Willen (2010), Neely (2010)
Gagnon, Raskin, Remache, and Sack (2011), Krishnamurthy and Vissing-Jorgensen (2011), Gabriel and
Lutz (2014), and the references therein. For various redistribution channels of monetary policy, we refer the
reader to the comprehensive study by Coibion, Gorodnichenko, Kueng, and Silvia (2012). See also Saiki and
Frost (2014) and our literature review section.

2



percolates through the network linkages, leading to heterogeneous real effects in the cross

section. Economic agents are affected by monetary policies differently, depending on their

economic distance from the central bank.

Our model features a pure exchange economy with multiple goods. Each agent is endowed

with one unit of a certain consumption good and with a quantity of money. To mute the

redistribution channel of devaluation of cash balances, we assume that all agents are endowed

with the same quantity of money. In addition, we assume that all agents have the same degree

of preference for money. We formalize agents’ heterogeneous trading relationships with a

symmetric network, which we represent as a circle. Hence, every agent in the circle is closely

related two immediate neighbors: one on the left and another on the right. Furthermore,

trades become less intense as agents are further away from each other in the circle.

In our model, the central bank increases the money supply by purchasing one particular

good, say the good of agent 1. We prove that this leads to an increase in the relative price of

good 1. A direct implication is that such intervention benefits agent 1: he is strictly better

off as a result of being the only agent who deals directly with the central bank. We also show

that the agent who is the furthest from the central bank, i.e., the one diametrically opposite

from agent 1 on the circle, is strictly worse off. Therefore, monetary expansion redistributes

real consumption from the agent who is furthest from the central bank to the agent who is

closest to the central bank.

Our model provides a method to empirically quantify agents’ economic distance from

the central bank. In the data, we assume that each sector is an economic agent. Rather

than imposing which agents are close to the central bank, we estimate which sectors of the

economy are most affected by monetary policy shocks by following our theoretical predic-

tions. Formally, we estimate a measure of economic distance from the Fed (EDF). A sharp

prediction of the model is that relative prices of sectors closer to the central bank are more

sensitive to unanticipated monetary policy shocks. We obtain our EDF measure in two steps.

First, we estimate unanticipated monetary policy shocks. Then, for each sector, we regress

changes in relative prices at the sector level on these unanticipated shocks. The coefficient

of this regression is our measure of economic distance from the Fed.

We test three major predictions of our theoretical framework. First, we test the model

implications for the principal component structure of innovations in relative prices. We show

that there is a strong factor structure in the changes in sectoral relative prices, which is

consistent with our model predictions. In addition, the first principal component of changes

in sectoral relative prices is directly related to monetary policy shocks, both in the model

and in the data.

More importantly, we show that the first principal component weights are closely related

to our measure of economic distance from the Fed. This strong evidence is consistent with
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our model. We calculate the first principal component weights from relative prices data,

while the EDF is the sensitivity of changes in relative prices with respect to monetary policy

shocks. In the model, a monetary policy shock leads to changes in relative prices in sectors

closest to the Fed. These changes themselves affect prices of other economically close sectors,

and the shock percolates through the network, affecting more sectors. The propagation of

the monetary policy shock dies off as agents are further away from the central bank. As a

result, changes in prices of sectors closest to the Fed drive most of the variance in relative

prices. For this reason, the first principal component weights should align with our EDF

measure. This is what we find in the data: by regressing the first principal component

weights on our measure of economic distance from the Fed, we find an R-squared above 95

percent, and a t-statistic above 15 for the slope coefficient.

The second prediction we verify in the data is the model implication for the correlation

structure of relative prices. As a monetary policy shock propagates through the network,

changes in relative prices of sectors economically close to each other should be more cor-

related. We rank sectors based on their distance from the Fed, and we show that the

correlation matrix resembles a block diagonal matrix, which is consistent with our model.

The average correlation between changes in relative prices decline monotonically from 70%

for neighboring sectors to about -20% for sectors furthest away from each other.

Finally, the third prediction we test in the data is the model implication for agents’

welfare. According to our model, positive monetary policy shocks benefit the sector closest

to the Fed, while they hurt the sector furthest away. Using excess returns of industry

portfolios, we show that indeed excess returns of sectors closest to the Fed are more sensitive

to unanticipated monetary shocks that sectors that are further away. These results are

consistent with our theoretical prediction.

Next, we discuss the related literature. In Section 2, we present our model, and, in Section

3, we discuss its theoretical predictions. In Section 4, we discuss our empirical evidence, and

we conclude in Section 5.

Related Literature While the redistribution channel we describe does not seem to have

been studied in modern monetary economics, the pre-classical economist Richard Cantillon

(1680-1734) alluded to it. He wrote in Chapter 6 of his book “Essai sur la Nature du

Commerce en Général”:2

If the increase of actual money comes from mines of gold or silver in the state
the owner of these mines, the adventurers, the smelters, refiners, and all the
other workers will increase their expenses in proportion to their gains. They will

2“Essay on the Nature of Trade in General,” written around 1730 and published in French in 1755.
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consume in their households more meat, wine, or beer than before, will accustom
themselves to wear better cloths, finer linen, to have better furnished houses and
other choicer commodities. They will consequently give employment to several
mechanics who had not so much to do before and who for the same reason will
increase their expenses: all this increase of expense in meat, wine, wool, etc. di-
minishes of necessity the share of the other inhabitants of the state who do not
participate at first in the wealth of the mines in question.

This passage describes the percolation of money from the point where it is injected

through a chain of economic agents, pushing prices up along the way. Until now, it was not

known whether this pre-classical intuition had any validity within the neo-classical paradigm.

In a related paper, Williamson (2008) presents a theoretical model in which goods market

segmentation slows down the percolation of new money across the population and generates

a redistribution of wealth. Our framework does not have market segmentation itself, and

thus it is frictionless in that sense. Another related work is by Ozdagli and Weber (2016), but

they focus on the effects of monetary policy on stock returns in the short horizon. Using a

production networks framework, they decompose the direct and indirect effect of monetary

policy. We present a theoretical model in which monetary policy can have redistributive

effects when agents are heterogeneous in their trading relations. In addition, we empirically

test several predictions of our model.

Other articles on the redistributive effects of monetary policy focus on a different channel:

the devaluation of cash balances. For example, in the overlapping generations model of

Bhattacharya, Haslag, and Martin (2005), monetary expansion redistributes real wealth

from old agents (who hold large amounts of money) to young agents (who do not). For

Palivos (2005), monetary expansion redistributes real wealth from altruistic agents (who

hold large amounts of money because they want to bequeath it to their children) to selfish

agents (who hold less money because they do not care about their children). Romer and

Romer (1999) point out that inflation redistributes wealth from creditors to debtors. In the

turnpike model of Shi (1999), monetary expansion redistributes real wealth from the rich

(i.e. agents with a large endowment) to the poor (agents with a small endowment). To the

contrary, Erosa and Ventura (2002) find that monetary expansion redistributes real wealth

from the poor (who hold a large percentage of their wealth in cash) to the rich (who hold

a large percentage of their wealth as capital instead of cash). Since all the agents in our

model have the same cash balance and the same appetite for cash, our redistributive effect

is completely independent from these.

This line of research belongs to the broader topic of money neutrality (see Lucas, 1996).

The redistributive effect that we identify argues strongly for the non-neutrality of money.

This question is also a subject of considerable interest in political economy. For example,
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Albanesi (2007) views the choice of monetary policy as the outcome of a political conflict

over redistribution between low income households and high income households. Ireland

(2005) argues that policy makers face a choice between engineering redistribution through

monetary policy or through fiscal policy, and tries to discern which one of the two options

is better.

While this is beyond the scope of the paper, modelling the economy as a social network

could prove useful in other areas of economics (e.g., Jackson, 2010). A closely related refer-

ence is Acemoglu et al. (2012), who show that the interconnections between different sectors

function as a propagation mechanism of sectoral shocks. Our focus is different in that we

are interested in the propagation of monetary policy shocks trough the economic network

and the percolation of money in the economy.

2 Model

Agents Consider a pure exchange economy with an even number N of agents: N = 2n for

some integer n > 1.3 Each agent can be interpreted as the representative agent for a certain

class of individuals. These N agents are identical, except in one respect: the nature of the

goods with which they are endowed and which they demand. The agents exchange money

and N distinct consumption goods. Agent j is endowed with money and with good j (for all

j = 1, . . . , N). Let M denote the quantity of money with which agent j is endowed. Since we

wish to make the agents as similar to one another as possible, M is assumed to be the same

across all agents. Furthermore, agent j is endowed with one unit of good j. This assumption

can be made without loss of generality, provided that we redefine the measurement unit of

each good accordingly.

Objective Function Each agent is a price-taker with Cobb-Douglas utility function. The

objective function of agent j (j = 1, . . . , N) is:

max
mj ;x1j ,...,xNj

(
mj∑N
k=1 mk

)β

×
N∏
i=1

xij
αij

subject to: mj +
N∑
i=1

pi xij ≤M + pj

(1)

The price of good i is pi, and by convention the price of a unit of money is 1. The budget

available to agent j is M + pj. The quantity mj represents the amount of money demanded

3The assumption that N is even is not essential to our conclusions, but it facilitates the exposition of the
model.
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Figure 1: Graphical representation of the circular structure of the economy. Since
N = 2n, the agent diametrically opposite Agent 1 is Agent n+ 1.

by agent j, and xij represents the amount of good i demanded by agent j (for i = 1, . . . , N).

As this is a one-period model, demand for money must be interpreted as reduced-form for

holding a liquid asset that can easily be sold in order to finance any needs that may arise in

the future (Sidrauski, 1967). Normalizing the cash holding of agent j by the sum of all cash

holdings is necessary to avoid “money illusion”: you cannot make everybody happier simply

by multiplying everybody’s cash holdings by a factor of ten. The Cobb-Douglas exponent

β, which captures the intensity of demand for money, is assumed to be the same across all

agents. We need β > 0 and ∀i = 1, . . . , N αii > 0. The other Cobb-Douglas exponents αij

are all non-negative.

Circular Symmetry The agents are organized in a circle. See Figure 1 for an illustration.

We assume that the relationship of agent i to agent j depends only on the number of

nodes that separates them: min(|i− j|, |N − i+ j|). This assumption of circular symmetry

implies a particular structure for the matrix A = (αij)i,j=1,...,N . There must exist a0 > 0 and

N − 1 non-negative coefficients a1, . . . , aN−1 such that:

A = (αij)i,j=1,...,N =



a0 a1 a2 · · · aN−1

aN−1 a0 a1
. . .

...

aN−2 aN−1 a0
. . . a2

...
. . . . . . . . . a1

a1 · · · aN−2 aN−1 a0


.

In mathematical terms, A is a circulant matrix. A circulant matrix is a matrix where

each row vector is rotated one element to the right relative to the preceding row vector.

Furthermore, A must be a symmetric circulant matrix, i.e. the following additional condition
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must be verified:

∀i = 1, . . . , N − 1 aN−i = ai. (2)

Thus, the Cobb-Douglas exponent of the demand for good i in the objective function of

agent j should only depend on the number of nodes that separates i and j. This can be

described as a rotation-invariant economy, since rotating the names of the agents by one or

more notches, clockwise or counter-clockwise, does not modify any of the assumptions.

It will be convenient to denote by SC (z0, z1, . . . , zn) the symmetric circulant matrix whose

first row vector is [z0 z1 z2 . . . zn−1 zn zn−1 . . . z2 z1]. With this notation, we can write:

A = SC (a0, a1, . . . , an).

A convenient way to rewrite the objective function is to adopt the convention that the

indices for goods and agents are not elements of the set of all integers Z, but of the cyclic

group Z/NZ generated by the number of agents N . Thus, in terms of indices, i + N =

i−N = i, i.e. all the indices are interpreted modulo N . With this convention, Equation (1)

becomes:

max
mj ;x1j ,...,xNj

(
mj∑N
k=1 mk

)β

xjj
a0

[
n−1∏
k=1

(xj+k,j xj−k,j)
ak

]
xanj+n,j

subject to: mj +
N∑
i=1

pi xij ≤M + pj.

(3)

Central Bank The only institution that violates the rotation-invariance of the economy

is the central bank. A central bank cannot have the same economic relationship to all the

agents in the economy. Indeed, members of the general public are not usually allowed to

deal with the central bank directly, but only through a sequence of intermediaries. One

of the key roles of the head of the central bank is to control the money supply. She is

authorized to inject money into the economy by buying certain assets and putting them on

the central bank’s balance sheet, or to reduce the amount of money outstanding by selling

assets that were previously on its balance sheet. Either way, when the head of the central

bank injects money, she must inject it somewhere, and when she reduces the money supply,

she must take the money from somewhere. The notion of location implicit in the use of the

word “somewhere” is well-defined in our economy because we have modelled the market as

a social network, which generates proper topological notions of neighborhood and distance.

We assume that the head of the central bank injects money into the economy by buying

one specific good at the prevailing market price, say good 1. Let Q denote the quantity of

money injected by the central bank. The quantity of good 1 that is taken away from the

economy and placed onto the central bank’s balance sheet is Q/p1. Q does not need to be

strictly positive: if Q < 0 then the central bank is reducing the money supply and selling
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−Q/p1 units of good 1 from its balance sheet; finally, if Q = 0 then the central bank is

inactive, which is the only case where the rotation-invariance of the economy is respected.

2.1 Equilibrium

First-Order Conditions Let us start from the objective function of agent j (j = 1, . . . , N)

given in Equation (1). Note that
∑N

k=1mk = NM + Q, which is constant, so it can be

dropped. Taking the logarithm of the Cobb-Douglas utility function yields:

max
mj ;x1j ,...,xNj

β log(mj) +
N∑
i=1

αij log(xij)

subject to: mj +
N∑
i=1

pi xij ≤M + pj.

We can assume without loss of generality that:

β +
N∑
i=1

αij = 1. (4)

The Lagrangian is:

L = β log(mj) +
N∑
i=1

αij log(xij)− λ

(
mj +

N∑
i=1

pi xij −M − pj

)
,

where λ is the Lagrange multiplier. The first-order condition with respect to the demand

for money mj is:

β − λmj = 0. (5)

The first-order condition with respect to xij, the demand for good i, is:

αij − λ pi xij = 0 ∀i = 1, . . . , N. (6)

Substituting Equation (5) into Equation (6) yields:

pi xij =
αij
β
mj ∀i = 1, . . . , N. (7)

Market-Clearing Conditions The market-clearing conditions for goods 1 through N

are:
N∑
j=1

xij = 1− δi1
Q

p1

∀i = 1, . . . , N,
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where δ denotes the Kronecker symbol, i.e. δi1 is equal to one if i = 1 and zero otherwise.

Multiplying both sides by the price yields:

N∑
j=1

pixij = pi − δi1Q ∀i = 1, . . . , N.

Using Equation (7), we get:

N∑
j=1

αij
β
mj = pi − δi1Q ∀i = 1, . . . , N. (8)

Remember that we have defined the matrix A = (αij)i,j=1,...,n. We can rewrite Equation (8)

more synthetically in matrix form as:

β−1A


m1

...

mN

 =


p1

...

pN

−Qe1,

where e1 is a conformable vector with one in the first row and zeros everywhere else.4

Define N -dimensional column vectors for money demand m = [m1 . . .mN ]′ and for prices

p = [p1 . . . pN ]′. Then we have:

β−1Am = p−Qe1. (9)

The market-clearing condition for money does not need to be examined as it will trivially

be satisfied.

Budget Constraints Due to non-satiation, the budget constraint for a given agent j

(j = 1, . . . , N) is an equality constraint:

mj +
N∑
i=1

pi xij = M + pj.

Substituting Equation (7) into the budget constraint yields:

mj +
N∑
i=1

αij
β
mj = M + pj.

4Uppercase bold denotes matrices, and lowercase bold denotes vectors.
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Thanks to Equation (4), this simplifies into:

β−1mj = M + pj.

If we vectorize this expression and multiply both sides from the left by the matrix A, we

obtain:

β−1Am = MA1 + Ap,

where 1 denotes a conformable vector of ones. Since A is a symmetric circulant matrix, 1

is one of its eigenvectors:

A1 =

(
N∑
j=1

α1j

)
1 =

(
N−1∑
i=0

ai

)
1 = (1− β)1.

So we get:

β−1Am = (1− β)M1 + Ap.

Comparing with Equation (9) yields:

β−1Am = p−Qe1 = (1− β)M1 + Ap.

After some algebraic manipulations, we finally obtain:

(I−A) p = (1− β)M1 +Qe1, (10)

where I denotes a conformable identity matrix. In order to go further, we need to prove a

technical lemma.

Lemma 1 For any real square matrix Z, let ‖Z‖ denote its spectral norm, which is defined

as the square root of the largest eigenvalue of ZZ′. Under the assumptions of Theorem 1,

‖A‖ < 1.

Proof of Lemma 1 All circulant matrices are diagonalizable. Therefore, in order to prove

the lemma, it is sufficient to prove that all the eigenvalues of A have modulus strictly lower

than 1. Since A is a circulant matrix, its jth eigenvalue (j = 1, . . . , n) is given by the

well-known formula (see e.g. Gray (2006), Chapter 3):

lj =
N−1∑
k=0

e−2jkπi/Nak, (11)
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where i =
√
−1. Therefore its modulus is bounded by:

|lj| =

∣∣∣∣∣
N−1∑
k=0

e−2jkπi/Nak

∣∣∣∣∣ ≤
N−1∑
k=0

∣∣e−2jkπi/Nak
∣∣ ≤ N−1∑

k=0

∣∣e−2jkπi/N
∣∣·|ak| ≤ N−1∑

k=0

|ak| =
N−1∑
k=0

ak = 1−β < 1.

This completes the proof of Lemma 1. 2

Solution The bound ‖A‖ < 1 guarantees that the matrix I −A is invertible. Therefore

Equation (10) yields:

p = (1− β)M (I−A)−1 1 +Q (I−A)−1 e1. (12)

Define the matrix:

Λ = (λij)i,j=1,...,N = (I−A)−1 .

Since 1 is one of the eigenvectors of A, it is also an eigenvector of I−A and of Λ. Therefore

we have:

(I−A) 1 = β 1

Λ 1 =
1

β
1.

This enables us to rewrite Equation (12) as:

∀i = 1, . . . , N pi =
1− β
β

M + λi1Q. 2

We can summarize these results by the following theorem:

Theorem 1 If the following assumptions are satisfied:

(a) there are N agents and N real consumable goods (in addition to money), where N is

an even number: N = 2n for some integer n > 1;

(b) agent j is endowed with the quantity of money M > 0 and with one unit of good j;

(c) for all j = 1, . . . , N , agent j has the objective function:(
mj∑N
k=1mk

)β

xjj
a0

[
n−1∏
k=1

(xj+k,j xj−k,j)
ak

]
xj+n,j

an ,

where mj is his demand for money, and xij is his demand for good i (i = 1, . . . , N);
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(d) β > 0, a0 > 0 and a1,...aN−1 are all non-negative;

(e) the exponents of the objective function are normalized so that β+a0+2
∑n−1

k=1 ak+an = 1;

(f) Q is the change in the money supply that occurs as the central bank buys (if Q ≥ 0) or

sells (if Q ≤ 0) good 1 at the market price;

then the equilibrium price for good i is:

pi =
1− β
β

M + λi1Q ∀i = 1, . . . , N, (13)

where Λ = (λij)i,j=1,...,N = (I−A)−1 and A = SC (a0, a1, . . . , an).

The meaning of Equation (13) is intuitive: if the central bank does not intervene (Q = 0),

then the rotation-invariance of the economy is respected and the prices of all real consumable

goods are equal to the baseline price 1−β
β
M . However, as soon as the central bank intervenes

(Q 6= 0), rotation-invariance is violated, prices are distorted away from the baseline, and the

size of the distortion is a linear function of the change in money supply Q.

3 Theoretical Predictions

Neighborhood Effects We assume that agents have closer economic ties to their imme-

diate neighbors than to distant neighbors. This is necessary in order to induce topological

notions of location and closeness in the economy. It translates into the condition:

a0 ≥ a1 > a2 ≥ a3 ≥ · · · ≥ an. (14)

In other words, agent j has strictly more intense need for the goods in the initial endowment

of agents j − 1 and j + 1 than for those of agents j − 2 and j + 2. In turn, agent j has more

intense (or the same) need for the goods in the initial endowment of agents j − 2 and j + 2

than for those of agents j − 3 and j + 3; and so forth. Of all the goods in the economy, the

one for which agent j has the least intense need is the one in the initial endowment of agent

j + n, who is located diametrically opposite him on the circle.

The most simplistic case is: a1 > 0 and a2 = · · · = an/2 = 0, i.e. an agent only transacts

with the two neighbors on either side of him. But our results hold for the more general case

described in Equation (14).

In order to perform comparative statics for the influence of the change in the money

supply Q on equilibrium prices, we need to find out more about the λi1’s. This is achieved

by the following theorem.
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Theorem 2 Under the assumptions of Theorem 1 and the neighborhood effects assump-

tion (14),

∀i = 2, . . . , N λN+2−i,1 = λi1

λ11 > λ21 > . . . > λn1 ≥ 0.

The proof of Theorem 2 is somewhat technical, so it is relegated to Appendix A.

Corollary 1 Under the assumptions of Theorem 1 and the neighborhood effects assump-

tion (14),

∀i = 2, . . . , N pN+2−i = pi

and:

(i) Q = 0 =⇒ p1 = p2 = · · · = pn+1;

(ii) Q > 0 =⇒ p1 > p2 > · · · > pn+1;

(iii) Q < 0 =⇒ p1 < p2 < · · · < pn+1.

Proof of Corollary 1 This corollary follows immediately from Theorem 2 and Equation

(13). 2

Corollary 2 Assume that the hypotheses of Theorem 1 and the neighborhood effects as-

sumption (14) are satisfied. Relative to the baseline case where the money supply is constant

(Q = 0):

(i) if Q > 0 then Agent 1 is strictly better off and Agent n+ 1 is strictly worse off;

(ii) if Q < 0 then Agent 1 is strictly worse off and Agent n+ 1 is strictly better off.

Proof of Corollary 2 If Q > 0 (Q < 0) then the prices of all the goods Agent 1 consumes

go down (up) relative to the price of good 1, with which this agent is endowed. As a result,

his budget constraint becomes strictly less (more) binding. Therefore he is strictly better

(worse) off.

If Q > 0 (Q < 0) then the prices of all the goods Agent n + 1 consumes go up (down)

relative to the price of good n+ 1, with which this agent is endowed. As a result, his budget

constraint becomes strictly more (less) binding. Therefore he is strictly worse (better) off.

2

For any other agent (2 through n and n+2 through N), the impact of monetary intervention

(Q 6= 0) is ambiguous because, relative to the price of the good he is endowed with, some of

the goods he consumes become more expensive, and others become cheaper.
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4 Evidence

In this section, we investigate several testable predictions of our theory. According to The-

orem 1, economic distance from the monetary authority is the sensitivity of relative prices

with respect to unanticipated monetary policy shocks. We exploit this model prediction to

estimate a measure of the Economic Distance from the Fed (EDF). We describe our data

sources in Subsection 4.1 and detail our empirical procedure to estimate EDF in Subsection

4.2. In Subsection 4.3, we test several predictions of the model and find supporting evidence

for our mechanism for the transmission of monetary policy shocks. We discuss robustness

analysis regarding the choice of our variables and our regression specifications at the end of

the section.

4.1 Data

Producers’ Price Index (PPI) is obtained from the Bureau of Economic Analysis (BEA),

from 2005 to 2015, for a total of 15 sectors based on the two-digit North American Industry

Classification System (NAICS) and the Bureau of Economic Analysis (BEA) industry clas-

sification. We use Consumer Price Index (CPI),5 Industrial Production Index (IP), Gross

Domestic Product (GDP), and money supply data from the Federal Reserve Bank of Saint

Louis Economic Data (FRED). Unemployment rate is obtained from the Bureau of Labor

Statistics (BLS). We deflate PPI, GDP, IP, and money supply using CPI. In the analysis,

we use log changes of GDP, PPI, money supply, and unemployment rate.

For stocks returns, we consider all stocks from the Center for Research in Security Prices

(CRSP) with share codes 10 and 11. Penny stocks are removed from the sample and delisting

returns are taken into account. We form industry portfolios based on the same industry

classification as the BEA’s PPI data. Since the GDP data is available at quarterly frequency,

we set all our data to quarterly frequency. The PPI data availability limits our sample to

be from 2005 to 2015.

4.2 Economic Distance from the Fed

All testable implications of our theory hinge on econometrician’s ability to construct an index

that measures the economic distance from the Fed (EDF). We would have to assign an EDF

index to every price in a given dataset. This can cover consumer prices, producer prices,

wages, or even asset prices. To the best of our knowledge, this type of endeavor has never

been attempted in the literature. It requires the same kind of information that goes into

5Consumer Price Index for All Urban Consumers: All Items.
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building Leontief’s (1941) input-output matrix, which models the structure of inter-industry

relations.

An alternative approach is to exploit our model’s predictions and build a proxy for the

EDF index. Specifically, given an EDF index, Theorem 1 implies that prices will behave

differently, depending on the index level they correspond to. We can therefore use money

supply and Producers’ Price Index data in order to build an EDF proxy. We start by defining

a first proxy for monetary shocks as quarterly log changes in money supply

∆mt = mt −mt−1, (15)

where m is the log of the monetary base M1. Because these changes can be partly anticipated,

we construct a second proxy for monetary shocks by regressing log changes in money supply

on its own lags, lags of unemployment, and lags of industrial production,

∆mt = a+
L∑
l=1

bl∆mt−l +
L∑
l=1

cl∆ut−l +
L∑
l=1

dl∆ipt−l + emt , (16)

where u is the log of unemployment, ip is the log of industrial production, and L is the

number of lags, which in the above regression is fixed at four quarters. The residual emt

represents then our second, unanticipated measure of monetary shocks.

Using the PPI data for each one of the 15 sectors of the economy, we then estimate the

following relationship between price changes at sectoral level and monetary shocks:

∆pi,t = αi + βi,0∆Mt + βi,1∆Mt−1 + γi,1∆pi,t−1 + epi,t, (17)

where pi is the log PPI for sector i and ∆M is one of our two proxies for monetary shocks:

∆m obtained from (15) or em obtained from (16). Notice that we add the lagged price

change in the specification (17) in order to control for price-stickiness.

In what follows, we choose to describe our results using the unanticipated monetary

shocks, i.e., ∆Mt = emt ; the results are virtually the same if we use simple log changes

in money supply, ∆mt. The quantity of interest is the sensitivity of price changes in each

sector with respect to changes in money supply, which we interpret as the Economic Distance

from the Fed. This sensitivity is directly measured by the coefficient βi,0 estimated from the

regression (17). It is, however, plausible that changes in money supply may have a persistent

effect on prices; therefore, we build a second EDF proxy by calculating the sum of the beta

coefficients:

β̃i ≡ βi,0 + βi,1. (18)
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A large and positive coefficient β̃i (or βi,0) signals a low-EDF industry, whereas a large

and negative coefficient signals a high-EDF industry. A coefficient close to zero signals an

industry whose prices of goods are not significantly affected by by monetary shocks.

Table 1 presents the results of the regression specification (17). There is significant

variation in sectors’ distance from the central bank. The coefficients βi,0 vary from 0.37

(Retail trade) to -1.56 (Mining). The table is ordered by the coefficients β̃i. To capture

potential delayed effects of monetary policy, we choose β̃i to be our measure of economic

distance from the Fed (EDF) for the remaining of our analysis. Nevertheless, our results are

robust to use βi,0 as EDF measure as well.

4.3 Testable Implications

4.3.1 Principal Components

According to Theorem 1, in our model prices are driven by a unique common factor: the

monetary shock Q. This implies that the variance-covariance matrix of price changes across

sectors has only one nonzero eigenvalue, whose corresponding eigenvector is given by6

λ̄ =


λ11

...

λN1

 . (19)

If our theory is a good description of reality, then (i) we expect to observe a strong

factor structure in the data, and (ii) the most important factor explaining variation in price

changes across sectors should indeed be highly correlated with any of our two proxies for

monetary shocks. We thus perform an eigendecomposition of the covariance matrix of price

changes across the 15 sectors in the economy. This eigendecomposition reveals that sectoral

price changes have a strong factor structure, with the first principal component explaining

nearly 80% of the variation.7

We plot in Figure 2 time series of our proxy of unexpected monetary shocks and of the

one-quarter ahead first principal component obtained above. Both time series are normalized

in order to make them comparable. The plot shows a clear positive relationship between the

two series (the coefficient of correlation between the two series is 0.55; a linear regression

of the one-quarter ahead principal component on this quarter’s monetary shock results in a

6To see this, notice that the variance-covariance matrix of price changes resulting from (13) equals λ̄λ̄′σ2
Q,

where we denote by σ2
Q the variance of changes in the money supply. It follows that the unique nonnegative

eigenvalue is λ̄′λ̄ and its corresponding eigenvector is λ̄.
7This is an considerable value, given that we use deflated PPIs—without adjusting for inflation, this

number would be even larger.
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Table 1: Economic Distance from the Fed (EDF). Results of the regression specification

∆pi,t = αi + βi,0∆Mt + βi,1∆Mt−1 + γi,1∆pi,t−1 + epi,t,

in which price changes in each sector are regressed on unanticipated monetary shocks and their
lagged values. Column (1) shows the estimated coefficients βi,0, whereas column (2) shows the
estimated values of β̃i (the EDF), defined in (18) as the sum of βi,0 and βi,1.

(1) (2) (3)

βi,0 β̃i ≡ βi,0 + βi,1 Adj. R2

Information 0.25∗∗∗ 0.19∗∗ 0.31
[0.000] [0.011]

Retail trade 0.37∗∗∗ 0.16 0.32
[0.000] [0.106]

Wholesale trade 0.32∗∗∗ 0.15∗ 0.33
[0.000] [0.090]

Educational services 0.25∗∗∗ 0.11∗ 0.35
[0.000] [0.057]

Other services 0.24∗∗∗ 0.11∗ 0.31
(except public administration) [0.000] [0.073]
Arts and entertainment 0.24∗∗∗ 0.09 0.30

[0.000] [0.167]
Professional, scientific, 0.25∗∗∗ 0.08 0.33
and technical services [0.000] [0.157]
Finance and insurance 0.24∗∗∗ 0.04 0.38

[0.000] [0.431]
Construction 0.30∗∗∗ 0.03 0.40

[0.000] [0.660]
Public administration 0.17∗∗∗ -0.02 0.36

[0.000] [0.622]
Transportation and warehousing 0.20∗∗∗ -0.19∗∗ 0.36

[0.026] [0.037]
Utilities -0.04 -0.36∗ 0.13

[0.811] [0.057]
Manufacturing -0.03 -0.49∗∗∗ 0.29

[0.840] [0.001]
Agriculture, forestry, 0.05 -0.57∗ 0.17
fishing and hunting [0.858] [0.051]
Mining, quarrying, -1.56∗∗∗ -2.45∗∗∗ 0.38
and oil and gas extraction [0.009] [0.000]

p-values in square brackets
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 2: Monetary Shocks and the First Principal Component of Price Changes.
The solid line represents a time-series of unexpected monetary shocks, defined as emt in (16). The
dashed line represents the time-series of the first principal component of sectoral-level price changes
(one-quarter ahead).

strongly statistically significant coefficient, with a t-stat of 4.14). As in the model, the data

shows that monetary policy shocks are a strong driver of the observed variation in prices

across sectors of the economy.

Our model not only predicts that sectoral-level price changes obey a strong factor struc-

ture, but also identifies changes in money supply as the main factor driving price changes.

More specifically, according to Theorem 1, regressions of price changes on monetary shocks

identify exactly the coefficients λi1. Therefore, the empirical counterparts of the coefficients

λi1 are the coefficients β̃i resulting from the regression specification (17). The same coeffi-

cients λi1 are also identified as the weights of the first principal component in price changes

(Equation 19). This generates a testable theoretical prediction: the coefficients β̃i and the

weights of the first principal component of sectoral-level price changes, which we denote by

λ̃i, are proportional:

β̃i ∝ λ̃i. (20)

Figure 3 depicts the relationship between β̃i and λ̃i. The x-axis shows the coefficients β̃i

resulting from the regression specification (17) and the y-axis shows the weights of the first

principal component of sectoral-level price changes. Because one of the sectors (Mining) has

considerably larger values for both β̃i and λ̃i, we also show the same relationship in panel

(b) after excluding this sector. The two panels show a strong positive relation in each case,

in line with the theoretical prediction (20).

The two panels in Figure 3 show the linear fit lines between β̃i and λ̃i. Ideally, if the
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Figure 3: EDF Index vs First Principal Component of Price Changes. The EDF index is
defined as the sum of coefficients βi,0 and βi,1 from the regression (17), whereas the first principal
component is obtained through an eigendecomposition of the covariance matrix of sectoral-level
price changes.

proportionality relation (20) is satisfied, we should expect a strong positive coefficient but

also an insignificant constant coefficient. Table 2 shows the results of the regressions, with

columns (1) and (2) corresponding respectively to panels (a) and (b) of Figure 3. The R-

squared coefficients are above 95 percent in each case (with or without Mining). The slope

coefficients are strongly statistically significant, with t-stats of 47.02 and 16.72 respectively.8

Furthermore, the slope coefficient does not change much after removing Mining from the

regression. Finally, the constant coefficients are both very close to zero and not statistically

significant, as the theoretical relationship (20) predicts.

Figure 3 and Table 2 show overall support for our main theoretical prediction. Monetary

shocks affect differently economic sectors: prices in sectors “closer” to the monetary authority

are more sensitive to monetary shocks than sectors furthest away. In the data, as in the

model, monetary shocks are the main driver of fluctuations in sector-level price changes and

percolate through the economic network.

4.3.2 Correlations

We turn now to a second prediction of the model. If indeed the economic distance from

the monetary authority matters, then we expect the covariance structure of prices to reflect

8Notice that the weights of the first principal component of sectoral-level price changes can be adjusted
arbitrarily. Therefore, we do not necessarily expect a slope coefficient equal to one.
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Table 2: EDF vs Principal Component Weights. Results of the regression specification

PC1 weighti = η0 + η1β̃i + ε,

in which the weights of the first principal component of sectoral-level price changes are regressed
on the EDF index. Columns (1) and (2) correspond to panels (a) and (b) of Figure 3.

(1) (2)
With Mining Without Mining

Constant η0 -0.001 -0.001
(-0.115) (-0.091)

Slope η1 0.380∗∗∗ 0.385∗∗∗

(47.02) (16.72)
R2 0.994 0.955
Nb. Obs. 15 14

t-statistics in round brackets
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

this effect. Price changes in sectors with large and positive coefficients β̃i (low-EDF sectors)

should covary more with each other than with price changes in other sectors. The same

holds for price changes in sectors with large and negative coefficients β̃i (high-EDF sectors),

which should covary more with each other than with price changes in other sectors. In

other words, the correlation matrix of price changes across sectors should show stronger

correlations among price changes in close-by sectors.

Panel (a) of Figure 4 draws a heatmap of the correlation matrix of price changes across

sectors of the economy. We order sectors by their EDF index, as we did in Table 1. The

correlation matrix indeed depicts a strong factor structure: price changes among sectors

along the diagonal (close-by sectors) are more correlated with each other than price changes

among sectors that are furthest away from each-other. This suggest that our proposed EDF

index is indeed capturing a notion of “economic distance from the Fed.”

In panel (b), we plot averages across the main diagonal and the upper diagonals of the

correlation matrix. That is, the average of the main diagonal is one, which is the first point in

the plot. Then, the second point represents the average of the first diagonal above the main

diagonal; this value represents the average correlations between price changes in sectors that

are “neighbors of degree one.” The third point represents the average correlations between

price changes in sectors that are “neighbors of degree two,” and so on. Our theory predicts

that these averages should go down as we move away from the main diagonal, and panel (b)
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Figure 4: Heatmap of the Correlation Matrix of Price Changes. In panel (a), sectors are
ranked by their EDF Index (coefficient β̃i). Panel (b) computes the average correlation on the main
diagonal and on the upper diagonals of the correlation matrix.

of Figure 4 shows that this is indeed the case.9

4.3.3 Industry Returns

The third and final testable prediction of our model results from Corollary 2 of Theorem 2.

According to our model, the net effect of an expansionary monetary policy is to redistribute

real consumption from the Agent n + 1 to the Agent 1, making Agent 1 better off and

Agent n + 1 worse off. Symmetrically, a contractionary monetary policy redistributes pur-

chasing power in the other direction, reversing the welfare implication.

In order to identify this effect, we first measure sector-level excess returns. Assuming

that higher excess returns for a particular sector of the economy indicates that the industry

is better off, Corollary 2 then implies that the excess returns of the sector closest to the

Fed should be positively correlated with monetary shocks. Conversely, the sector furthest

away should be strictly worse off when the central bank increases the money supply; hence

we expect the excess returns in this sector to be negatively correlated to monetary shocks.

Accordingly, in a first step, we perform the following regressions for each sector:

ri,t = αri + βri,0∆Mt + βri,1∆Mt−1 + γri,1ri,t−1 + eri,t, (21)

9The average correlations obtained in panel (b) can help in calibrating the theoretical model of Section 2.
More specifically, the vector of average correlations can be mapped in a vector of non-negative Cobb-Douglas
exponents αij .
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Figure 5: EDF Index vs Betas of Industry Returns. The EDF index is defined as the sum of
coefficients βi,0 and βi,1 from the regression (17), whereas the betas of industry returns are defined
as the sum of coefficients βri,0 and βri,1 from the regression (21).

where ri,t denotes the excess return of sector i. These regressions have the same structure

as the regressions in (17) but are based on different data. We also eliminate from these

regressions the sector “Public Administration” (NAICS code 92). The coefficients βri,0 and

βri,1 capture how the returns of sector i respond to monetary shocks. Consistent with our

definition of EDF, we focus on the sum of these coefficients, namely β̃ri = βri,0 + βri,1, to

measure which sectors benefit more from monetary shocks.

Figure 5 plots the return-based coefficients against the EDF measure. There is a positive

relation between the two varaibles. If we regress β̃ri on the EDF index, we obtain an statis-

tically significant positive relationship, which holds even after excluding the mining sector.

We report the results of this regressions in Table 3. These results are consistent with our

theoretical prediction in Corollary 2 of Theorem 2.

Robustness We conduct a series of robustness exercises. First, our analysis is robust to

different measures of money supply available from Fred: using M2 instead of M1, or other

standard measures of money supply, does not change our results. Second, varying the number

of lags L in the regression (16) does not change the results. Interestingly, if we add more lags

to the regression (17), then results for the principal components of price get stronger. Third,

if we do not deflate the PPI data then using CPI, then our results still hold. Finally, for

industry returns, our findings to do change much if we use returns instead of excess returns.
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Table 3: EDF vs Betas of Industry Returns. Results of the regression specification

β̃ri = η0 + η1β̃i + ε,

in which the industry returns betas obtained from (21) are regressed on the EDF index. Columns
(1) and (2) correspond to panels (a) and (b) of Figure 5.

(1) (2)
With Mining Without Mining

Constant η0 0.660∗∗∗ 0.668∗∗∗

(5.620) (5.589)
Slope η1 0.536∗∗∗ 0.887∗

(3.201) (1.909)
R2 0.416 0.181
Nb. Obs. 14 13

t-statistics in round brackets
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5 Conclusion

This paper introduces a model of the economy as a social network. The basic point is that

everybody does not trade equally with everybody else. This fact induces topological notions

of distance, neighborhood and closeness on the set of economic agents. One of the key roles

of a central bank is to control the quantity of money. In order to do so, the central bank

must inject money somewhere into the social network that is the economy. The effects of

monetary policy will percolate through the whole network, but not uniformly so. Whoever

is closest to the location where money is injected will be more strongly impacted.

Our model shows that whoever stands closest to (furthest from) the point where the

central bank intervenes will benefit most (least) from unanticipated expansionary monetary

policy shocks. Monetary policy redistributes consumption goods from the agents who are

furthest from the central bank to those who interact directly with the central bank. We test

several implications of the theory and find empirical support.
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A Proof of Theorem 2

In order to prove the theorem, we must first prove 3 lemmas in succession. The most

important of these lemmas is the first one.

Lemma 2 Let X = SC (x0, . . . , xn) and Y = SC (y0, . . . , yn) be two symmetric circulant

matrices of dimension N × N . Then Z = XY is also a symmetric circulant matrix: Z =

SC (z0, . . . , zn). If x0 ≥ x1 ≥ · · · ≥ xn ≥ 0 and y0 ≥ y1 ≥ · · · ≥ yn ≥ 0 then z0 ≥ z1 ≥ · · · ≥
zn ≥ 0.

Proof of Lemma 2 All circulant matrices are diagonalizable on the same set of eigenvec-

tors (Gray (2006), Chapter 3). It is well known that the product of two symmetric matrices

that share the same set of eigenvectors is also a symmetric matrix. Furthermore, the product

of two circulant matrices is a circulant matrix. Therefore Z = XY is a symmetric circulant

matrix. By writing down the formula for the product of two matrices, we find that:

∀k = 0, . . . , n zk =
N−1∑
j=0

xjyj−k (22)

zk+1 − zk =
N−1∑
j=0

xj (yj−k−1 − yj−k) . (23)

From Equation (22) it is obvious that when all the xi’s and all the yi’s are greater than or

equal to zero, so are the zi’s. Now let us define: y′j = yj − yj−1 for all j = 0, . . . , N − 1.

It is easy to verify that y′N+1−j = y′1−j = −y′j. Furthermore, by the assumptions of Lemma

2, y′j ≥ 0 for j ∈ {0, n+ 1, n+ 2, . . . , N − 1} and y′j ≤ 0 for j ∈ {1, 2, . . . , n}. We can now

rewrite Equation (23) more concisely as:

∀k = 0, . . . , n zk+1 − zk = −
N−1∑
j=0

xj y
′
j−k. (24)

We shall prove that this quantity is nonpositive by considering two cases separately. We use

the symbol b c to denote the floor function.
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First Case: k ∈
{

0, 1, 2, . . . , bn−1
2
c
}

In this case, we can split the summation on the

right-hand side of Equation (24) into:

zk+1 − zk = −
k∑
j=0

xj y
′
j−k −

2k+1∑
j=k+1

xj y
′
j−k −

k+n∑
j=n

xj y
′
j−k

−
2k+n+1∑
j=k+n+1

xj y
′
j−k −

n−1∑
j=2k+2

xj y
′
j−k −

N−1∑
j=2k+n+2

xj y
′
j−k.

Let us make the change of variable i = 2k+ 1− j in the second summation, and the change

of variable i = 2k +N + 1− j in the fourth and sixth summations. This yields:

zk+1 − zk = −
k∑
j=0

xj y
′
j−k −

k∑
i=0

x2k+1−i y
′
k+1−i −

k+n∑
j=n

xj y
′
j−k

−
k+n∑
i=n

x2k+N+1−i y
′
k+N+1−i −

n−1∑
j=2k+2

xj y
′
j−k −

n−1∑
i=2k+2

x2k+N+1−i y
′
k+N+1−i

= −
k∑
j=0

xj y
′
j−k +

k∑
i=0

x2k+1−i y
′
i−k −

k+n∑
j=n

xj y
′
j−k

+
k+n∑
i=n

x2k+N+1−i y
′
i−k −

n−1∑
j=2k+2

xj y
′
j−k +

n−1∑
i=2k+2

xi−2k−1 y
′
i−k

=
k∑
j=0

(x2k+1−j − xj) y′j−k +
k+n∑
j=n

(x2k+N+1−j − xj) y′j−k

+
n−1∑

j=2k+2

(xj−2k−1 − xj) y′j−k. (25)

Let us consider these three summations separately:

• When j ∈ {0, 1, 2, . . . , k}, we have:

0 ≤ j ≤ 2k + 1− j ≤ n =⇒ x2k+1−j − xj ≤ 0

and 1− n ≤ j − k ≤ 0 =⇒ y′j−k ≥ 0,

therefore the 1st summation is less than or equal to zero.

• When j ∈ {n, n+ 1, . . . , n+ k}, we have:

n ≤ j ≤ 2k +N + 1− j ≤ N =⇒ x2k+N+1−j − xj ≥ 0

and 1 ≤ j − k ≤ n =⇒ y′j−k ≤ 0,
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therefore the 2nd summation is less than or equal to zero.

• When j ∈ {2k + 2, 2k + 3, . . . , n− 1}, we have:

0 ≤ j − 2k − 1 ≤ j ≤ n =⇒ xj−2k−1 − xj ≥ 0

and 1 ≤ j − k ≤ n =⇒ y′j−k ≤ 0,

therefore the 3rd summation is less than or equal to zero.

Together, these results establish that zk+1 − zk ≤ 0 for all k ∈
{

0, 1, 2, . . . , bn−1
2
c
}

.

Second Case: k ∈
{
bn−1

2
c+ 1, bn−1

2
c+ 2, . . . , n− 1

}
In this case, we can split the sum-

mation on the right-hand side of Equation (24) into:

zk+1 − zk = −
k∑

j=2k−n+1

xj y
′
j−k −

n∑
j=k+1

xj y
′
j−k −

k+n∑
j=2k+2

xj y
′
j−k

−
N−1∑

j=k+n+1

xj y
′
j−k −

2k−n∑
j=0

xj y
′
j−k −

2k+1∑
j=n+1

xj y
′
j−k.

Let us make the change of variable i = 2k + 1− j in the second and sixth summations, and

the change of variable i = 2k +N + 1− j in the fourth summation. This yields:

zk+1 − zk = −
k∑

j=2k−n+1

xj y
′
j−k −

k∑
i=2k−n+1

x2k+1−i y
′
k+1−i −

k+n∑
j=2k+2

xj y
′
j−k

−
k+n∑

i=2k+2

x2k+N+1−i y
′
k+N+1−i −

2k−n∑
j=0

xj y
′
j−k −

2k−n∑
i=0

x2k+1−i y
′
k+1−i

= −
k∑

j=2k−n+1

xj y
′
j−k +

k∑
i=2k−n+1

x2k+1−i y
′
i−k −

k+n∑
j=2k+2

xj y
′
j−k

+
k+n∑

i=2k+2

x2k+N+1−i y
′
i−k −

2k−n∑
j=0

xj y
′
j−k +

2k−n∑
i=0

xN−2k−1+i y
′
i−k

=
k∑

j=2k−n+1

(x2k+1−j − xj) y′j−k +
k+n∑

j=2k+2

(x2k+N+1−j − xj) y′j−k

+
2k−n∑
j=0

(xN−2k−1+j − xj) y′j−k. (26)

Let us consider these three summations separately:
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• When j ∈ {2k − n+ 1, 2k − n+ 2, . . . , k}, we have:

0 ≤ j ≤ 2k + 1− j ≤ n =⇒ x2k+1−j − xj ≤ 0

and 1− n ≤ j − k ≤ 0 =⇒ y′j−k ≥ 0,

therefore the 1st summation is less than or equal to zero.

• When j ∈ {2k + 2, 2k + 3, . . . , k + n}, we have:

n ≤ j ≤ 2k +N + 1− j ≤ n =⇒ x2k+N+1−j − xj ≥ 0

and 1 ≤ j − k ≤ n =⇒ y′j−k ≤ 0,

therefore the 2nd summation is less than or equal to zero.

• When j ∈ {0, 1, 2, . . . , 2k − n}, we have:

0 ≤ j ≤ N − 2k − 1 + j ≤ n =⇒ xN−2k−1+j − xj ≤ 0

and 1− n ≤ j − k ≤ 0 =⇒ y′j−k ≥ 0,

therefore the 3rd summation is less than or equal to zero.

Together, these results establish that zk+1 ≤ zk for all k ∈
{
bn−1

2
c+ 1, bn−1

2
c+ 2, . . . , n− 1

}
.

Bringing together the two cases, we conclude that z0 ≥ z1 ≥ · · · ≥ zn. This completes

the proof of Lemma 2. 2

Lemma 3 Let D be a symmetric circulant matrix: D = SC (d0, d1, . . . , dn), where d0 ≥
d1 ≥ . . . ≥ dn ≥ 0. Then for all m ∈ N Dm is also symmetric circulant matrix: Dm =

SC (d0m, d1m, . . . , dnm). Furthermore, we have: d0m ≥ d1m ≥ . . . ≥ dnm ≥ 0.

Proof of Lemma 3 We shall prove the lemma by induction. For m = 0, D0 = I, so the

statement is trivially true. Now let us suppose that the statement is true for some power

m ∈ N. We have the decomposition: Dm+1 = DmD. Notice that the hypotheses of Lemma

2 are verified when we take X = Dm and Y = D. So Lemma 2 implies that the statement

is true for the power m+ 1. Therefore, by induction, the statement is true for all m ∈ N. 2

Lemma 4 Under the assumptions of Lemma 3, if d1 > d2 then for all m = 0, . . . , n − 1

dmm > dm+1,m.

Proof of Lemma 4 We shall prove this lemma by induction. Since D0 = I, we have

d00 = 1 and d10 = 0. Therefore the statement is true for m = 0. Now let us suppose that the
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statement is true for some m ∈ {0, . . . , n− 2}. Consider the decomposition: Dm+1 = DmD.

The hypotheses of Lemma 2 are verified when we take Z = Dm+1, X = Dm and Y = D.

From Equations (25-26) in the proof of Lemma 2, we know that:

∀k = 0, . . . , n− 1 zk+1 − zk ≤
k∑

j=max(0,2k−n+1)

(x2k+1−j − xj) y′j−k,

where all the terms in the summation are less than or equal to zero. Taking k = m+ 1 and

j = m, we obtain:

zm+2 − zm+1 ≤ (xm+3 − xm) y′−1.

Since

xm+3 − xm ≤ xm+1 − xm < 0

and y′−1 = y′2 = y2 − y1 < 0

by assumption, it follows that: zm+2−zm+1 < 0, i.e. dm+2,m+1−dm+1,m+1 < 0. Therefore the

statement is true for m+ 1. By induction, this means that it is true for all m = 0, . . . , n− 1.

This completes the proof of Lemma 4. 2

Proof of the Theorem We are now ready to complete the proof of Theorem 2. Since

the matrix A satifies the assumptions of Lemma 3, we know that for all m ∈ N Am is a

symmetric circulant matrix: Am = SC (a0m, a1m, . . . , anm), and that: a0m ≥ a1m ≥ . . . ≥
anm ≥ 0.

The bound ‖A‖ < 1 established in Lemma 1 guarantees that the matrix I−A is invertible,

i.e. that Λ = (I−A)−1 exists. Since A is a symmetric circulant matrix, I − A is also a

circulant matrix, and so is Λ = (I−A)−1. Thus, we can write: Λ = SC (l0, l1, . . . , ln). The

layout of a symmetric circulant matrix is such that:

∀i = 1, . . . , n+ 1 λi1 = li−1

∀i = n+ 2, . . . , N λi1 = lN+1−i.

This implies that ∀i = 2, . . . , N λN+2−i = λi, which was one of the assertions of Theorem

2 that needed to be proven.

Thanks to Lemma 1, we know that the series
∑∞

m=0 Am is convergent. Standard argu-

ments (see e.g. Szidarovszky and Molnár (2002), pp. 375–376) show that the sum of this
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series is:
∑∞

m=0 Am = (I−A)−1 = Λ. In particular, the entries of the matrix Λ satisfy:

∀j = 0, . . . , n lj =
∞∑
m=0

ajm.

Therefore they inherit their ordering from the ajm’s, and we have:

l0 ≥ l1 ≥ . . . ≥ ln ≥ 0.

The fact that these inequalities are actually strict:

l0 > l1 > . . . > ln

is a straightforward application of Lemma 4, given the assumption a1 > a2. Therefore:

λ11 > λ21 > . . . > λn+1,1 ≥ 0. 2
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