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We investigate, in a theoretical framework, the joint role played by investors’ attention to
news and learning uncertainty in determining asset prices. The model provides two main
predictions. First, stock return variance and risk premia increase with both attention and
uncertainty. Second, this increasing relationship is quadratic. We empirically test these two
predictions, and we show that the data lend support to the increasing relationship. The
evidence for a quadratic relationship is mixed. Overall, our study shows theoretically and
empirically that both attention and uncertainty are key determinants of asset prices. (JEL
G12, G13, G14)

Agrowing body of empirical evidence suggests that investor attention fluctuates
over time and that this impacts asset prices (Da, Engelberg, and Gao 2011). For
example, high levels of attention cause buying pressures and sudden price
reactions (Barber and Odean 2008, Barber, Odean, and Zhu 2009), whereas
low levels generate underreaction to announcements (Dellavigna and Pollet
2009). In fact, as Huberman and Regev (2001) point out, prices react to new
information only when investors pay attention to it.

In this paper, we focus on the relationship between attention to news, return
volatility, and risk premia. We study time-varying attention in a pure exchange
economy (Lucas 1978) populated by a representative investor with recursive
preferences (Epstein and Zin 1989). In this economy, a single risky asset
pays a continuous stream of dividends with an expected growth rate that is
unobservable and therefore needs to be estimated. The representative investor
estimates the expected growth rate by paying fluctuating attention to available
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information. In our model, fluctuations in attention are governed by changes in
the state of the economy.

We show that stock-return volatility and risk premia increase with attention.
The intuition for this can be understood as follows. When investors pay little
attention to news, information is only gradually incorporated into prices because
learning is slow. Therefore, low attention results in low return volatility. In
contrast, attentive investors immediately incorporate new information into
prices, and thus high attention induces high return volatility. In addition,
because high attention generates volatile returns, investors require a large risk
premium to bear this attention-induced risk. Conversely, low attention generates
low return volatility and thus a smaller risk premium.

Through the learning mechanism, fluctuations in attention generate further
effects on the volatility and risk premium. When attention is low, learning is
slow, and thus uncertainty about the future dividend growth rate tends to be
high, implying high levels of return volatility and risk premia. Conversely,
when attention is high, learning is fast and thus uncertainty tends to be low,
which generates low levels of volatility and risk premia. Therefore, our model
predicts that volatility and risk premia increase not only with attention but also
with uncertainty.

Attention and uncertainty thus have a joint impact on equilibrium asset prices.
Several empirical studies show that uncertainty is indeed a priced risk factor
(e.g., Massa and Simonov 2005, Ozoguz 2009) and that attention and volatility
are strongly related (Vlastakis and Markellos 2012, Dimpfl and Jank 2011,
Kita and Wang 2012). In our own empirical investigation, we validate the
above predictions of the model using Google search data to proxy for investors’
attention to news, the dispersion in analyst forecasts to proxy for uncertainty,
the GARCH estimation on S&P 500 returns to proxy for realized variance, and
the fitted values of a predictive regression of future S&P500 returns on current
dividend yields to proxy for risk premia. We first calibrate the parameters
of our model using the generalized method of moments (Hansen 1982). Then
regressing the S&P 500 variance and risk premium on attention and uncertainty
provides positive and significant parameters, suggesting that the data support
the increasing relations between attention/uncertainty and variance/risk premia.

Additionally, the model predicts quadratic relationships between atten-
tion/uncertainty and variance/risk premia, with positive quadratic coefficients.
We further investigate these predictions empirically and find only mixed
support for them in the data. Indeed, variance and risk premia increase
quadratically with attention only for sufficiently large values of attention,
whereas the quadratic coefficients of uncertainty are only weakly significant,
though nonetheless positive.

It is natural to expect investors’attention to react to changes in the state of the
economy, as shown in the theoretical work of Detemple and Kihlstrom (1987),
Huang and Liu (2007), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2009),
and Andrei and Hasler (2014). The approach that we adopt in our model is to
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measure the state of the economy as the weighted average of past dividend
surprises. Because there is no clear evidence as to whether investors’ attention
depends on past dividend surprises, we propose a variant of our model in
which attention depends on past stock return surprises, consistent with evidence
provided by Vozlyublennaia (2014). We obtain very similar results, aside from
a higher unconditional volatility for the market price of risk, volatility, risk
premium, and the risk-free rate.1

In addition, we extend our model to account for dividend leverage (see, e.g.,
Abel 1999; Bansal, Dittmar, and Lundblad 2005). This extension preserves the
positive relationship between attention/uncertainty and risk premium/volatility,
but it substantially magnifies the average level of stock-return volatility,
price-dividend-ratio volatility, and risk premium; all of these values become
comparable with historical estimates.

Our work contributes to a growing body of literature shedding light on
the importance of attention allocation in financial markets. The rational
inattention model of Sims (2003), which captures the trade-off between
information quality and effort costs, has been particularly influential. Rational
inattention theory can explain a wide array of phenomena, from category
learning and return comovement (Peng and Xiong 2006) to state-dependent
attention allocation (Kacperczyk, Van Nieuwerburgh, and Veldkamp 2009) and
underdiversification in portfolio holdings (Van Nieuwerburgh and Veldkamp
2009, 2010).2

A separate but large body of literature investigates the effect of information
quality and learning on portfolio choice and asset prices (see Pastor and
Veronesi 2009 for a recent survey).3 Our paper contributes to this literature
by providing predictions on the joint impact of time-varying attention and
uncertainty on stock-return volatility and risk premia.

Learning over the course of the business cycle has been extensively analyzed
in the literature, and two papers in particular are closely related. The first, Van
Nieuwerburgh and Veldkamp (2006), provides a foundation for the observed
sharp and sudden downturns, followed by gradual recoveries. Their explanation
is based on the fact that agents learn better when productivity is high than

1 The high volatility of the market price of risk is puzzling for asset-pricing models. It is rationalized with
nonstandard preferences (e.g., Campbell and Cochrane 1999, Barberis, Huang, and Santos 2001) or with
intermittent portfolio rebalancing (Chien, Cole, and Lustig 2012).

2 See also Peng and Xiong (2006), Mondria (2010), Van Nieuwerburgh and Veldkamp (2010), and Mondria
and Quintana-Domeque (2013) for other studies on limited information-processing capacity and their financial
consequences. On the empirical front, several papers provide evidence of time-varying attention. Lustig and
Verdelhan (2012) compute the number of Google Insight searches for the word “recession” and observe huge
spikes in the search volume in December 2007 and January 2008. Vlastakis and Markellos (2012), Dimpfl and
Jank (2011), and Kita and Wang (2012) find support of countercyclical attention to news.

3 Other representative papers are Dothan and Feldman (1986), Detemple (1986), Gennotte (1986), Timmermann
(1993), David (1997), Veronesi (1999), Veronesi (2000), Brennan and Xia (2001), Xia (2001), Scheinkman and
Xiong (2003), Dumas, Kurshev, and Uppal (2009), and Ai (2010).
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when it is low.4 The second, Kacperczyk, Van Nieuwerburgh, and Veldkamp
(2009), belongs to the rational inattention literature originated by Sims (2003).
It builds a static model in which mutual fund managers allocate more attention
to aggregate shocks and less attention to idiosyncratic shocks during recessions,
which is consistent with our calibration.

Our model features a representative investor with recursive utility who learns
about the expected growth rate of consumption. Consequently, our paper is
related to the long-run risk literature as a whole (e.g., Bansal and Yaron 2004,
Ai 2010, Drechsler and Yaron 2011, Colacito and Croce 2013; Bansal et al.
2013) but is more precisely related to Bansal and Shaliastovich (2011), who
study an economy with long-run risk in which the expected growth rate of
consumption is unobservable. In their setup, the investor optimally chooses
to pay a cost and observe the expected growth rate when the volatility of
consumption is sufficiently high. This implies jumps in asset prices in bad
times, even though the determinants of consumption have smooth dynamics.
In contrast, we provide and test predictions linking attention and uncertainty to
volatility and risk premia.

1. An Equilibrium Model of Fluctuating Attention

We consider a pure exchange economy (Lucas 1978) in which the attention paid
by a representative investor to news is assumed to be state dependent. First,
we describe the economic setting and the learning problem of the investor.
Second, we discuss the dynamics of the investor’s attention to news. Third,
we solve for the equilibrium and derive its asset-pricing implications. Fourth,
we estimate the parameters of the model by using the generalized method of
moments (Hansen 1982).

1.1 The economic setting
The economy is characterized by a single output process (the dividend)
having an unobservable expected growth rate (the fundamental). There are
two securities: one risky asset in positive supply of one unit and one risk-free
asset in zero net supply. The risky asset is defined as the claim to the dividend
process δ, with dynamics that are given by

dδt

δt
=ftdt +σδdZ

δ
t . (1)

The unobservable fundamental f follows a mean-reverting process, as
follows:

dft =λ
(
f̄ −ft

)
dt +σf dZ

f
t . (2)

4 Consistent with their theoretical model, Van Nieuwerburgh and Veldkamp (2006) show that analyst forecast
errors on the level of nominal GDP are countercyclical. In contrast, we estimate our model on real GDP growth
rates and corresponding analyst forecasts and find support for procyclical analyst forecast errors in this case.
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The economy is populated by a representative investor. Given that the
fundamental is unobservable, the investor uses the information at hand to
estimate it. The investor observes the current dividend δ and an informative
signal s with dynamics

dst =�tdZ
f
t +
√

1−�2
t dZ

s
t . (3)

The vector (Zδ,Zf ,Zs)� is a 3-dimensional standard Brownian motion
under the complete information filtration. The process � represents the
correlation between the signal and the fundamental. Without loss of generality,
this correlation is assumed to be positive.

The model belongs to the literature on continuous-time consumption-
portfolio decision problems with incomplete information (Detemple 1986,
Gennotte 1986, Dothan and Feldman 1986). We adopt, however, a slightly
different signal structure. Specifically, in our setup the signal provides
information on changes in the fundamental and not on its level.5 Consequently,
even if the signal is perfectly accurate, the investor does not observe the true
value of the fundamental. This difference from the classic models does not
change our results qualitatively.

Let us focus on the correlation � between the signal and the fundamental.
Consistent with Detemple and Kihlstrom (1987), Veldkamp (2006a,2006b),
Huang and Liu (2007), Peng and Xiong (2006), and Andrei and Hasler (2014),
� can be interpreted as the accuracy of news updates observed by the investor.
The case �=0 is equivalent to no news updates, whereas �=1 is equivalent
to perfectly accurate news updates. In the references above, the investor can
exert control over this accuracy, and thus the parameter� is called attention to
news.6

We follow the same interpretation and assume that the investor directly
controls this accuracy, although we do not solve for the optimal attention
allocation. Instead, we claim that the investor changes her attention whenever
she observes changes in the state of the economy (in a way that we will define
precisely). Hence, in our model � is time-varying and is directly determined
by the (observable) state of the economy.

Assuming an exogenous process for attention has two advantages. First,
it offers the benefit of analytical tractability. Second, by linking information

5 To the best of our knowledge, this specification was first adopted by Dumas, Kurshev, and Uppal (2009). The

alternative would be to assume that the investor observes a noisy signal of the fundamental, dst =ft dt +
1−�t
�t

dZst .

In that case, the variance of the noisy signal would be stochastic and would belong to the interval [0,∞).

6 Other types of attention have been studied. In the rational inattention literature (Kahneman 1973, Sims 2003),
Peng and Xiong (2006), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2009), and Van Nieuwerburgh and
Veldkamp (2010) study attention-allocation problems when information-processing capacity is limited. Duffie
and Sun (1990), Abel, Eberly, and Panageas (2007), and Rossi (2010) study attention to wealth in the sense
that investors optimally choose not to trade in certain periods. Chien, Cole, and Lustig (2012), Bacchetta and
Wincoop (2010), and Duffie (2010) assume that these periods of inattention are fixed and investigate their impact
on asset prices.
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choice (which is often difficult to measure) to the state of the economy (which
is observable), we are able to generate testable predictions and bring our model
to the data. It is worth mentioning that the main goal in this analysis is not to
provide a theoretical foundation of fluctuating attention but to understand how
asset prices react when attention fluctuates.7 Fluctuating attention is confirmed
by empirical research8 and also by our own estimation. As such, our model
relies on the premise that investors’ attention is time-varying and thus can be
viewed as a simplification of a more complex problem.

1.2 Time-varying attention
Our aim is to connect attention movements to variables that represent the state
of the economy. In the present model, two observable variables can fulfill this
role: the dividend or the stock price. The dividend is exogenous, whereas the
stock price is endogenously determined in equilibrium.

Because the dividend is exogenous, assuming that attention depends on it is
technically easier than if attention were to depend on the stock price. In the latter
case, solving for the equilibrium involves a fixed-point problem. We solve for
the equilibrium in both cases and show that results are similar. Therefore, and
for ease of exposition, we analyze in this section the case in which movements in
dividends drive investors’attention. We relegate to Section 4.1 a full derivation
and discussion of the case in which attention is driven by price movements.

We postulate a measure of the state of the economy that captures two
important features. First, it reflects not only the current but also the past
performance of dividends. This describes a usual behavior of investors to search
for trends in financial data (exponential smoothing for forecasting is a standard
practice). Second, broad evidence shows that surprises, rather than news, face
increased scrutiny from investors.9 Thus, we rely on surprises in dividend
growth rather than on just dividend growth. The resulting variable, which we
denote the performance index, captures both features. It is defined as follows

φt ≡
∫ t

0
e−ω(t−u)

(
dδu

δu
− f̂udu

)
, (4)

where f̂u is the investor’s estimate of the fundamental at time u. The parameter
ω>0 represents the weight associated with the present relative to the past.
If ω is large, the past dividend growth influences to a minimal degree the

7 Potential foundations of fluctuating attention to news can be found in Detemple and Kihlstrom (1987), Veldkamp
(2006a,2006b), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2009), Bansal and Shaliastovich (2011), and
Andrei and Hasler (2014).

8 See Da, Engelberg, and Gao (2011), Vlastakis and Markellos (2012), Dimpfl and Jank (2011), Kita and Wang
(2012), Chauvet, Gabriel, and Lutz (2012), and Schmidt (2013), among others.

9 SeeAndersen, Bollerslev, Diebold, and Vega (2003) for evidence of market reaction to announcement surprises in
the foreign exchange market, Flannery and Protopapadakis (2002) for evidence in the stock market, or Fleming
and Remolona (1999) for evidence in the bond market. See also Brown, Hillegeist, and Lo (2009) for direct
evidence that earnings surprises affects investors’ trading decisions.
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performance index, and the latter becomes almost a substitute for the current
dividend growth. On the other hand, if ω is small, the past dividend growth
influences the performance index to a greater extent.10

The dynamics of the performance index are derived from the dynamics of
the dividend. An application of Itô’s lemma on the performance index yields

dφt =−ωφtdt +σδdWδ
t , (5)

where Wδ is the innovation of the dividend. This shows that the performance
index fluctuates around a long-term mean of zero with a mean-reversion speed
ω.

We are now ready to introduce the link between the performance index and
investors’attention. The following definition is the core of our way of modeling
time-varying attention.

Definition 1. Attention� is defined as a function g of the performance index:

�t =g(φt )≡ �̄

�̄+
(
1−�̄)e�φt , (6)

where �∈R and 0≤�̄≤1.

Attention � fluctuates around a long-run mean �̄ and lies in the interval
[0,1]. According to the sign of the parameter �, attention can either increase
(�<0) or decrease (�>0) with the performance index φ. The dynamics of
investors’ attention are thus explained by three parameters: ω, �̄, and �.

1.2.1 Parameters of the attention process. The unconditional distribution
of the performance index φ is Gaussian with mean 0 and a variance given by
σ 2
δ /2ω (seeAppendixA.1 for a proof of this statement). We know from Equation

(6) that, for � �=0, � is a strictly monotone function of φ. This monotonicity
allows us to compute the density function of attention� by a change-of-variable
argument. We provide this density function in Appendix A.1 and proceed here
with its discussion.

The parameter �̄ dictates the location of the unconditional distribution of
attention. Two other parameters govern the shape of this distribution: the first
is�, the parameter that dictates the adjustment of attention after changes in the
performance index, and the second is ω, the parameter that dictates how fast
the performance index adjusts after changes in dividends. Figure 1 illustrates
the probability density function of attention for different values of these two
parameters. The solid line corresponds to the calibration performed in Section
1.5 on U.S. data, which shows that attention can vary substantially and take
extreme values with significant probabilities.

10 Koijen, Rodriguez, and Sbuelz (2009) build a similar performance index in a dynamic asset allocation problem
to allow for momentum and mean reversion in stock returns. In our case, this index is built directly from the
dividend process in order to capture the recent development of the dividend in a parsimonious way.
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Figure 1
Probability density function of investor attention
This figure shows the probability density function of � for different values of � and ω. Other parameters are
λ=0.42, f̄ =0.028, �̄=0.368, σf =0.029, and σδ =0.014. The solid line illustrates the probability density function
for �=286 and ω=4.74 (this corresponds to the calibration performed in Section 1.5 on U.S. data). The dashed
line shows how the distribution changes with a lower � (�=100 and ω=4.74). The dotted line shows how the
distribution changes with a higher ω (�=286 and ω=10).

The two additional lines show that a decrease in the parameter � (dashed
line) and an increase in the parameterω (dotted line), respectively, have similar
effects: both tend to bring attention closer to its long-run mean. Although these
effects are similar, the parametersω and� have different impacts on the process
�. The parameter ω dictates the length of the history of dividends taken into
account by the investor. If ω is large, the investor tends to focus more on recent
dividend surprises, and attention reverts quickly to its mean. Consequently,
the unconditional distribution concentrates more around the long-run mean �̄.
On the other hand, the parameter � governs the amplitude of the attention
movements. A parameter � close to zero (positive or negative) would keep
the attention close to its long-run mean. The distinct roles played by these two
parameters help us to calibrate them on U.S. data, which is a task that we
undertake in Section 1.5.

1.3 Bayesian learning
The advantage of linking attention to an observable variable is that attention
itself becomes observable. Thus, the setup remains conditionally Gaussian, and
the Kalman filter is applicable. The state vector prior to the filtering exercise
consists of one unobservable variable (the fundamental f ) and a vector of two
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observable variablesϑ =(ζ s)�, where we define ζ ≡ logδ. In other words, the
investor observes the dividend and the signal and tries to infer the fundamental.
Because the performance indexφ is built entirely from past values of dividends,
it does not bring any additional information.

The distribution of ft conditional on observing the history of the dividend
and the signal is Gaussian with mean f̂t and variance γt (Liptser and Shiryaev
2001). Therefore, the investor’s updating rule is defined by

dζt =

(
f̂t− 1

2
σ 2
δ

)
dt +

(
σδ 0

)
dWt, (7)

df̂t =λ
(
f̄ − f̂t

)
dt +

(
γt
σδ

σf�t

)
dWt, (8)

dγt

dt
=σ 2

f −2λγt−
(
σ 2
f�

2
t +
γ 2
t

σ 2
δ

)
, (9)

where W ≡ (Wδ,Ws)� is a two-dimensional Brownian motion under the
investor’s observation filtration, and � is provided in Definition 1. The
estimated fundamental is denoted by f̂ , and the two Brownian motions
governing the system are defined by

dWδ
t =

1

σδ

[
dζt−

(
f̂t− 1

2
σ 2
δ

)
dt

]
, (10)

dWs
t =dst (11)

and represent the normalized innovation processes of dividend and signal
realizations. The proof of the above statements is provided in Appendix A.2.

Formally, we define uncertainty as the conditional variance of the
fundamental given today’s information. In the present setup, this corresponds
to γ (usually referred to as the posterior variance, or Bayesian uncertainty).
Equation (9) shows the dynamics of γ . The first two terms denote the
incremental uncertainty induced by the dynamics of the fundamental itself;
the smaller the volatility of the fundamental and the larger the mean-reversion
speed, the smaller the incremental uncertainty becomes. The term in brackets
defines the reduction in uncertainty due to more accurate information; the more
attentive the investor and the smaller the volatility of the dividend, the smaller
the incremental uncertainty becomes.

Note that, unlike in other learning models, such as those of Scheinkman
and Xiong (2003) and Dumas, Kurshev, and Uppal (2009), in our framework
uncertainty never converges to a steady state, although it is locally deterministic.
The reason is that high attention tends to reduce uncertainty, whereas low
attention tends to increase uncertainty. A similar channel of fluctuating
uncertainty with Gaussian shocks is studied by Xia (2001) in a dynamic
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portfolio choice problem in which an agent learns about stock return
predictability.11

The dynamics of f̂ in Equation (8) reveal that two diffusion components drive
the overall noise in the fundamental. The first component loads on dividend
innovations and the second on news innovations. Because these two types
of innovation represent the signals used by the investor to infer the value
of the fundamental, the vector

[
γt/σδ σf�t

]
constitutes the weights assigned

by the investor to both signals. When attention changes, these weights move
in opposite directions: for high levels of attention, the investor assigns more
weight to news shocks, whereas for low levels of attention, the investor assigns
more weight to dividend shocks. Consequently, the variance of the estimated
fundamental, σ 2(f̂t ), is time-varying and comprises two opposing effects that
arise from learning. It follows from Equation (8) that this variance is

σ 2(f̂t )=
γ 2
t

σ 2
δ

+σ 2
f�

2
t . (12)

Equation (12) shows how attention drives the volatility of the estimated
fundamental. Higher attention incorporates more information into updating
f and thus generates a higher instantaneous volatility (a direct impact). But
higher attention also reduces uncertainty and thus tends to decrease volatility
(an indirect impact).12

To summarize, we offer a framework to analyze the impact of both attention
and uncertainty on asset prices. In particular, our aim is first to establish model-
implied predictions on the relationships between attention, uncertainty, stock-
return volatility, and risk premia and second to test these predictions by using
real data. We now turn to the computation of the equilibrium.

1.4 Equilibrium with Epstein-Zin preferences
The representative investor’s preferences over the uncertain consumption
stream {ct } are represented by a utility index Ut that satisfies the following
recursive equation:

Ut =

{(
1−e−ρdt)c1−ψ

t +e−ρdtEt
[
U 1−α
t+dt

] 1−ψ
1−α
} 1

1−ψ
, (13)

where ρ is the subjective discount factor, 1/ψ is the elasticity of intertemporal
substitution, and α is the relative risk-aversion coefficient. Replacing dt =1 in

11 Time-varying uncertainty can also arise in the presence of non-Gaussian distributions or when fundamentals
follow regime-switching processes. See Detemple (1991), David (1997), Veronesi (1999), and Timmermann
(2001).

12 Note that the indirect effect is not contemporaneous; because the uncertainty process γ has deterministic dynamics
(see Equation (9) and its interpretation), uncertainty decreases only gradually when attention is high. In other
words, because uncertainty is a “dt” process and attention is driven by a Brownian motion, uncertainty is always
“one step behind” (Xia 2001). This lead-lag relation disconnects uncertainty from short-term movements in
attention, and thus sudden spikes in attention can result in states of high attention and high uncertainty.
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Equation (13) gives the discrete time formulation of Kreps and Porteus (1978),
Epstein and Zin (1989), and Weil (1989). When the risk-aversion coefficient
is equal to the reciprocal of the elasticity of intertemporal substitution, α=ψ ,
the recursive utility is reduced to the time-separable power utility with relative
risk-aversion α.

Let us define

Jt ≡ 1

1−αU
1−α
t =Et

[∫ ∞

t

f (cs,Js)ds

]
, (14)

where

f (c,J )=
ρ c

1−ψ
1−ψ

((1−α)J )1/ν−1 −ρνJ (15)

is the normalized aggregator (see Duffie and Epstein 1992a,1992b) and ν≡
1−α
1−ψ . Duffie and Epstein (1992a) show that a state-price density is defined as

ξt =e
∫ t

0 fJ (cs ,Js )dsfc (ct ,Jt ). (16)

The following proposition, the proof of which is presented by Benzoni,
Collin-Dufresne, and Goldstein (2011), provides the partial differential
equation defining the price-dividend ratio.

Proposition 1. For ψ,α �=1 we have

Jt =
1

1−α c
1−α
t (ρI (xt ))

ν , (17)

ξt =e
−∫ t0(ρν+ 1−ν

I (xs )

)
ds
ρνc−αt I (xt )

ν−1, (18)

wherex≡(f̂ φ γ
)�

and I (x) is the price-dividend ratio. The price-dividend
ratio I (.) satisfies the following partial differential equation:

0=I

(
(1−α)

(
f̂ − 1

2
σ 2
δ

)
+(1−α)2 σ

2
δ

2
−ρν

)
+

DI ν
I ν−1

+(1−α)ν
(
γ If̂ +σ 2

δ Iφ
)
+ν,

(19)

where we define Dh(x)≡hx(x)μx(x)+ 1
2 trace

(
hxxσx(x)σx(x)�

)
.

The dynamics of the vector of state variables x and price-dividend ratio I (x)
are defined by

dxt =μx(xt )dt +σx(xt )dWt, (20)

dI (xt )

I (xt )
=μI (xt )dt +σI (xt )dWt, (21)
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where

μx(xt )=
(
λ(f̄ − f̂t ) −ωφt σ 2

f (1−�2
t )−2λγt− γ 2

t

σ 2
δ

)�
, (22)

σx(xt )=

⎛⎝ γt
σδ

σf�t

σδ 0
0 0

⎞⎠, (23)

σI (xt )≡
(
σ1I (xt ) σ2I (xt )

)
=

1

I (xt )
Ix(xt )

�σx(xt ). (24)

The partial differential Equation (19) can be rewritten as

0=I

(
(1−α)

(
f̂ − 1

2
σ 2
δ

)
+(1−α)2 σ

2
δ

2
−ρν

)

+ν

(
λ
(
f̄ − f̂ )If̂ −ωφIφ+

(
σ 2
f (1−�2)−2λγ − γ 2

σ 2
δ

)
Iγ

)

+
1

2
ν

((
γ 2

σ 2
δ

+σ 2
f�

2

)
If̂ f̂ +σ 2

δ Iφφ+2γ If̂ φ

)

+
1

2I
ν(ν−1)

((
γ 2

σ 2
δ

+σ 2
f�

2

)
I 2
f̂

+2γ If̂ Iφ+σ 2
δ I

2
φ

)
+(1−α)ν

(
γ If̂ +σ 2

δ Iφ
)
+ν.

(25)

As do Benzoni, Collin-Dufresne, and Goldstein (2011), let us conjecture that
the price-dividend ratio I (x) can be approximated by the following exponential
form:

I (x)≈eβ0+β1x, (26)

where β0 is a scalar and β1 =
(
β11 β12 β13

)
. Plugging the exponential form

(26) in Equation (25) and performing a first-order linearization of the PDE
around x0 =

(
f̄ 0 γss

)
yields a system of the form13

A+Bx =0, (27)

where the scalar A and the vector B =
(
B1 B2 B3

)
are large expressions.

Setting A=0 and B =
(
0 0 0

)
yields a system of four equations with four

unknowns (β0, β11, β12, and β13) that can be solved numerically.
We assume for the rest of this paper a coefficient of risk aversion of α=10,

an elasticity of intertemporal substitution of 1
ψ

=2, and a subjective discount

13 Note that f̄ is the long-term mean of f̂ ; 0 is the long-term mean of φ; and γss =−λσ2
δ

+

√
σ2
δ

(
λ2σ2

δ
+σ2
f

(1−�̄2)
)

is the long-term posterior variance under the assumption that φt =0.
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factor of ρ =0.03. The level of risk aversion helps generate reasonable risk
premia, whereas an elasticity of intertemporal substitution larger than one
implies a preference for early resolution of uncertainty. These aforementioned
utility parameters, together with the parameters exposed in Table 1, imply the
following equilibrium price-dividend ratio:

I (x)≈eβ0+β11f̂ +β12φ+β13γ , (28)

where

β0 =3.6152 β11 =1.1207 β12 =−0.0006 β13 =−11.3741. (29)

These coefficients show that the level of the price-dividend ratio depends
strongly on the estimated fundamental f̂ , slightly on the posterior variance
γ , and insignificantly on the performance index φ (or attention �). Indeed,
because f̂ , γ , and φ are of the order of 10−2, 10−4, and 10−2, respectively, the
impacts of these processes on the log price-dividend ratio are of the order of
10−2, 10−3, and 10−6, respectively.

The positive relationship between the estimated fundamental and the price-
dividend ratio (β11>0) can be understood by analyzing two competing effects.
First, an increase in the estimated fundamental implies an increase in current
consumption because future consumption is expected to be larger and investors
wish to smooth consumption over time. Hence, the demand for the stock
decreases, implying a drop in the price. This negative effect generates an inverse
relationship between prices and expected dividend growth rates. Second,
an increase in the estimated fundamental implies an improvement of risky
investment opportunities, pushing investors to increase their demand for the
stock. This positive effect outweighs the first negative effect as long as the
elasticity of intertemporal substitution is larger than one. Therefore, prices
increase with the estimated fundamental.

An increase in uncertainty generates a drop in prices (β13<0). Intuitively,
an increase in uncertainty pushes investors to lower current consumption
because expected consumption is more uncertain and investors wish to smooth
consumption over time. Hence, the demand for the stock rises, increasing its
price. But riskier investment opportunities push investors to lower their risky
investments. This tends to decrease the stock price. Because the substitution
effect dominates the precautionary savings effect as long as the elasticity of
intertemporal substitution is larger than one, uncertainty and prices are inversely
related in our model.

1.4.1 Risk-free rate, risk premium, and volatility. Applying Itô’s lemma to
the state-price density ξ provided in Equation (18) yields the risk-free rate r
and the vector of market prices of risk θ defined in Proposition 2 below. Proofs
are provided by Benzoni, Collin-Dufresne, and Goldstein (2011).
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Proposition 2. The risk-free rate r and market price of risk θ satisfy

rt =ρ+ψf̂t− 1

2
α(1+ψ)σ 2

δ (30)

−(1−ν)

(
σ1I (xt )σδ+

1

2
σ1I (xt )

2 +
1

2
σ2I (xt )

2

)
, (31)

θt =
(
ασδ+(1−ν)σ1I (xt ) (1−ν)σ2I (xt )

)�
. (32)

The dynamics of the stock price S =δI (x) are written as

dSt

St
=

(
μt− δt

St

)
dt +σtdWt . (33)

The diffusion vector σt and the risk premium μt−rt satisfy

σt =
(
σδ+σ1I (xt ) σ2I (xt )

)
, (34)

μt−rt =σtθt =
(
σδ+σ1I (xt ) σ2I (xt )

)(
ασδ+(1−ν)σ1I (xt ) (1−ν)σ2I (xt )

)�
,

(35)

=ασ 2
δ +(1−ν+α)σδσ1I (xt )+(1−ν)

(
σ1I (xt )

2 +σ2I (xt )
2
)
. (36)

Proposition 2 shows that the risk-free rate depends on the estimated
fundamental f̂ and on the diffusion of the price-dividend ratio as long as α �=ψ .
When the risk aversion and the elasticity of intertemporal substitution are larger
than one, 1−ν is positive. Hence, in this case, the second part of Equation (31)
is negative, making the level of the risk-free rate smaller than with the CRRA
utility. In addition, the larger the elasticity of substitution, the smaller ψ and
1−ν become and thus the smaller is the volatility of the risk-free rate.

Equation (32) shows that the risk associated with time-varying fundamentals
is priced. As long as α �=ψ , the market price of risk vector θ consists of two
positive terms that depend on the diffusion of the price-dividend ratio. The first
term loads on dividend surprises, and the second loads on news surprises.As risk
aversion α increases or the elasticity of intertemporal substitution decreases,
1−ν rises, and hence the prices of risk and risk premia also rise.

1.5 Calibration to the U.S. economy
Our theoretical model assumes that the investor observes two processes (the
dividend stream δ and the flow of information s) and uses them to estimate
the evolution of the unobservable variable f . This poses a challenge when
one is trying to calibrate the model to observed data: in practice, the flow of
information is not observable.To manage this difficulty, we follow David (2008)
and use 1-quarter-ahead analyst forecasts of real U.S. GDP growth rates as a
proxy for the estimated fundamental f̂ . To be consistent, we use the real U.S.
GDP realized growth rate as a proxy for the dividend growth rate. Quarterly
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data from Q1:1969 to Q4:2012 are obtained from the Federal Reserve Bank of
Philadelphia.

An immediate discretization of the stochastic differential equations defining
the state variables ζ , f̂ , φ, and γ would provide biased estimators, so we
first solve this set of four stochastic differential equations. The solutions are
provided in Appendix A.3. We then approximate the integrals pertaining to
those solutions using a simple discretization scheme provided in Appendix
A.4.

By observing the vectors log δt+�
δt

and f̂t for t =0,�,...,T �, we can directly

infer the value of the Brownian vector εδt+�≡Wδ
t+�−Wδ

t . In addition, because
the observed vector f̂t , t =0,�,...,T � depends on εδt+� and εst+�≡Ws

t+�−Ws
t ,

we obtain a direct characterization of the signal vector εst+� by substitution. This
shows that observing δ and f̂ instead of δ and s provides a well-defined system.

1.5.1 Moment conditions. Our model is calibrated on the two aforemen-
tioned time series using the generalized method of moments (Hansen 1982). The
vector of parameters is defined by �=(λ,f̄ ,ω,�̄,�,σf ,σδ)�. Consequently,
we need at least seven moment conditions to infer the vector of parameters �.
For the sake of brevity, we relegate the moment conditions to Appendix A.4
and proceed here with their interpretation.

The analyst forecasts of the growth rate allow us to build moments
that identify λ and f̄ ; the conditional mean of f̂t+� and the unconditional
autocovariance of f̂t help to pin down the long-term mean parameter f̄ and the
mean-reversion parameter λ. The unconditional variance of the observed time
series defined by log δt+�

δt
− f̂t� identifies the volatility parameter σδ . Next,

the realized growth rate permits us to construct recursively the performance
index φt . The unconditional autocovariance and variance of φt as well as its
conditional variance are moments that identify the mean-reversion parameterω.
Then the conditional variance of f̂t+� and the unconditional mean and variance
of�t help us estimate �̄,�, and σf (note that we have to construct recursively
γt and �t ). In total, we have eleven moment conditions that help us estimate
seven parameters.

We match the unconditional variance of the model-implied attention �t to
the unconditional variance of a proxy of investors’attention. To build this proxy,
we follow Da, Engelberg, and Gao (2011) and use Google search volumes on
groups of words with financial or economic content.14 To avoid any bias, none
of the terms considered have positive or negative connotations. We scale this
Google attention index between zero and one (as our attention�) and compute

14 More precisely, the Google attention index is built based on the following combination of words: “financial news,”
“economic news,” “Wall Street Journal,” “Financial Times,” “CNN Money,” “Bloomberg News,” “S&P500,”
“U.S. economy,” “stock prices,” “stock market,” “NYSE,” “NASDAQ,” “DAX,” and “FTSE.” Using other
similar words in several combinations provides very similar empirical measures of attention.
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Table 1
Calibration to the U.S. Economy (GMM Estimation)

Parameter Symbol Estimate t-stat p-value

Persistence growth rate f λ 0.42 1.3 0.19
Mean growth rate f f̄ 0.028∗∗∗ 5.6 0
Persistence performance index φ ω 4.74∗∗∗ 188.7 0
Mean attention � �̄ 0.368∗∗∗ 4.7 0
Sensitivity attention to φ � 286∗∗∗ 9.5 0
Volatility growth rate f σf 0.029∗∗∗ 5.9 0
Volatility dividend growth σδ 0.014∗∗∗ 10.8 0

Parameter values resulting from a GMM estimation with eleven moment conditions. The Hansen J-test of
overidentification cannot be rejected (Pr[Chi-sq.(4)>J ]=0.35). Statistical significance at the 10%, 5%, and 1%
levels is labeled ∗, ∗∗, and ∗∗∗, respectively.

its unconditional variance, which should match the unconditional variance of
the model-implied attention.

1.5.2 Parameter estimates. The values, t-stats, and p-values of the vector
�, resulting from the GMM estimation, are provided in Table 1. The test
of overidentifying restrictions indicates that the model provides a good fit to
the GDP realized growth and GDP growth forecast, with a J -test p-value of
0.35. The mean reversion speed λ is the only nonsignificant parameter, and
its estimate is relatively far from what the long-run risk literature assumes.
Studies in this literature typically assume that the mean reversion parameter is
between 0 and 0.25. In Bansal and Yaron (2004), the AR(1) parameter of the
fundamental is worth 0.979 at monthly frequency (this would correspond to
λ=−12ln(0.979)=0.25), whereas Barsky and De Long (1993) assume that the
fundamental process is integrated. Although our data set does not confirm the
hypothesis of Barsky and De Long (1993) and Bansal and Yaron (2004), only
the far future can potentially tell us if this hypothesis is sustainable. Indeed, 43
years of quarterly data are largely insufficient to estimate a parameter implying
a half-life of at least 3 years.15

We obtain a low volatility of real GDP realized growth rate, σδ (which is
equal to the volatility of consumption in our model), and a low volatility of
the fundamental, σf . Both parameters are significant. The volatility of the real
GDP realized growth rate is close to 1% and is in line with the estimation of
Beeler and Campbell (2012) from postwar data.

We obtain a large and significant value for the parameter�, which suggests
that investors’ attention reacts heavily to changes in the performance index.
This is coupled with a high parameter ω, which suggests that the performance
index changes quickly based on recent information (i.e., investors use mostly

15 The half-life is a measure of the speed of mean-reversion, and it is given by ln(2)/λ. For the Bansal and Yaron
(2004) calibration, the half-life is roughly 33 months.
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data on the last year of dividend growth).16 Put differently, investors’ attention
is strongly sensitive to recent experience. Coming back to the solid line in
Figure 1, which shows the probability density function of investors’ attention
using the calibration from Table 1, we remark that attention varies substantially,
taking values over the entire interval with significant probabilities.

The parameter � is positive, which indicates that attention is high in bad
times (φ<0) and low in good times (φ>0). Because the conditional volatility of
forecasts is large in bad times, γ and/or� need to be high (see Equation (12)).17

Our GMM estimation tells us that� (the attention) has to be high in bad times to
satisfy the moment conditions, and this has the following interpretation: when
the economy is in an expansionary phase, the output δmight decrease only with
a low probability. Thus, investors do not have the incentive to exert a learning
effort. Reciprocally, when the economy enters a recessionary phase, the high
probability of a decrease in future consumption grabs investors’ attention and
leads them to estimate as accurately as possible the change in the fundamental.

Countercyclical attention (�>0) suggests that we should observe more
accurate forecasts in bad times than in good times, but the evidence on this
is mixed.

On the one hand, Patton and Timmermann (2008) find that forecasters
estimated GDP growth quite well for the recessions in the early 1990s and
2001 but that forecasters underestimated the strong GDP growth in the mid-
to late 1990s and consistently overestimated the realized values of GDP
growth after the 2001 recession, which indicates that forecasts are better in
bad times. We complement these findings by using a larger data set (from
1969 to 2012), and we find further evidence that analyst forecasts are more
accurate in recessions than in expansions.18 Next, according to Da, Gurun, and
Warachka (2014), forecast errors are smaller when the past 12-month returns are
negative than when they are positive, suggesting that information gathered by
analysts in downturns is more accurate than information obtained in upturns.19

Finally, Garcia (2013) documents that investors react strongly to news (good
or bad) during recessions, whereas during expansions investors’ sensitivity to
information is much weaker, which is in line with the concept that investors
focus more on information during recessions.

16 A value of ω=4.74 for the exponential moving average means that, at a quarterly frequency, the investor applies
a 69% weighting to the most recent output reading. Then the weights decrease as follows: 21%, 6%, 2%, and so
on.

17 When we split the data in NBER recessions and expansions, the conditional volatilities of forecasts are 1.98%
and 1.43%, respectively.

18 Specifically, we perform Mincer and Zarnowitz (1969) regressions in the two subsamples (recessions and
expansions); i.e., the realized GDP growth rate is regressed on a constant and its corresponding analyst forecast
in both subsamples. The null hypothesis is that the intercept is equal to zero and the slope is equal to one; i.e.,
the forecast error is conditionally unbiased. The test, which is available upon request, shows that the null cannot
be rejected in recession, whereas it is rejected in expansion.

19 This statement holds when investors acquire information continuously.
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On the other hand, Van Nieuwerburgh and Veldkamp (2006) find contrary
evidence, namely, that agents’ forecast precision is lower in bad times than
in good times. Additionally, Karlsson, Loewenstein, and Seppi (2009) show
that, when people are emotionally invested in information, they monitor their
portfolios more frequently in rising markets than is done in falling markets.
In other words, people “put their heads in the sand” when confronted with
adverse news.20 There have also been periods in which the economy did well
and attention was high (e.g., the frenzied media coverage of the stock market in
the late 1990s). Ultimately, this mixed evidence suggests that there is no clear
answer as to whether investors really focus more on news in bad times. Our
estimation seems to favor this hypothesis, but further investigation is needed
to draw definitive conclusions.

Theoretical results seem to suggest that investors optimally allocate more
attention to news during bad times. Kacperczyk, Van Nieuwerburgh, and
Veldkamp (2009) show that investors focus on aggregate news in recessions
(for market timing) and idiosyncratic news in expansions (for stock picking). In
Bansal and Shaliastovich (2011), investors acquire perfect information when
the volatility of output growth or the uncertainty is sufficiently large (most
likely during recessions). Furthermore, Andrei and Hasler (2014) uncover a
decreasing relationship between current attention and past returns, providing a
foundation for a positive parameter�. Our model simplifies the more complex
optimal attention allocation problem by taking the aforementioned theoretical
results as primitives.

1.5.3 Model-implied attention dynamics. Our estimation generates a
model-implied attention index.21 We compare this index with the one built from
Google search volumes (sampled at a quarterly frequency). The two indexes
are depicted in Figure 2. The correlation between these two attention indexes is
0.44 and is significant at the 99% confidence level. Movements in the implied
attention seem to be well aligned with movements in the Google attention
index. An ordinary least squares regression of the Google attention index on
the implied attention index provides a significant slope coefficient of 0.95 and
an adjusted R2 of 0.17 (see Table 2). The joint Wald test of zero-intercept and
unit-slope cannot be rejected at the 99% confidence level, providing further
support for the belief that we can extract a valid proxy for investors’ attention
to news from the data.

20 We note that in Karlsson, Loewenstein, and Seppi (2009) investors collect information about the value of their
portfolios—attention to wealth—whereas our investors collect information on the fundamental—attention to
news. As such, these two views do not exclude each other but simply suggest that attention to news and attention
to wealth might be inversely related.

21 We emphasize that in our estimation procedure we only use Google attention data to fit the unconditional variance
of attention. All other moment conditions rely on GDP data.
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Figure 2
Google attention index versus implied attention
The solid line depicts the attention index implied by our estimation, and the dashed line depicts the weighted
Google search index on financial and economic news (detrended). Indexes are divided by their sample average
to allow comparison with one another. The data set comprises thirty-six data points at a quarterly frequency from
Q1:2004 to Q4:2012. The table on the right presents the results obtained by regressing the Google attention index
on the implied attention index. Newey-West standard errors are reported in brackets, and statistical significance
at the 10%, 5%, and 1% levels is labeled with *, **, and ***, respectively.

Table 2
Google attention index against model-implied attention

Intercept 0.053
(0.392)

Impl. att. 0.947∗∗
(0.454)

Adj. R2 0.167
N 36

The table provides the outputs of the following regression:
Google attention index on model-implied attention. The data
set comprises thirty-six data points at a quarterly frequency
from Q1:2004 to Q4:2012. The Newey-West standard errors are
reported in brackets, and statistical significance at the 10%, 5%,
and 1% levels is labeled ∗, ∗∗, and ∗∗∗, respectively.

2. Attention, Uncertainty, and Volatility

In this section, we analyze the relationships between attention, uncertainty,
and the variance of stock returns. Our model has two main predictions: first
the variance of stock returns increases with both attention and uncertainty,
and second, this increasing relationship is quadratic. We perform an empirical
investigation and find that stock-return variance indeed increases with attention
and uncertainty. The data, however, provide mixed support for the quadratic
relationship.

The variance of stock returns follows from Proposition 2:

‖σt‖2 =σ 2
2t +σ

2
1t =
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σ 2
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t +
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. (37)
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Equation (37) shows that stock-return variance is determined by attention,
uncertainty, and investors’ price valuations.22 These price valuations are
reflected in the price-dividend ratio I and its partial derivatives with respect to
f̂ and φ, that is If̂ /I and Iφ/I . Given the exponential affine conjecture for the
price-dividend ratio provided in Equation (26), If̂ /I and Iφ/I are constants
that are equal to β11 and β12, respectively. Furthermore, for a wide range of
parameter values, numerical computations show that Iφ/I is rather small and
thus deserves no further investigation.

The term If̂ /I mainly depends on the elasticity of intertemporal substitution.
If the elasticity of intertemporal substitution is larger than one, If̂ /I is
positive. In this case, the asset price increases with the estimated fundamental.
Conversely, if the elasticity of intertemporal substitution is smaller than one
(e.g., in a CRRA setting with risk aversion larger than one), If̂ /I is negative.
In this case, the asset price decreases with the estimated fundamental. Finally,
if the elasticity of intertemporal substitution equals one, the asset price does
not depend on the fundamental. This feature is also present when investors are
log utility maximizers.

Having If̂ /I and Iφ/I be constant facilitates our discussion, as the variance
of stock returns depends only on attention � and uncertainty γ .23 Because
the elasticity of intertemporal substitution is larger than one in our calibration,
stock-return variance increases strictly and quadratically with both attention
(through the first term in Equation (37)) and uncertainty (through the second
term in Equation (37)). This model-implied relationship is quantified in
Figure 3.

The effect of attention and uncertainty on stock returns can be interpreted
in terms of weights assigned to information provided by news and dividend
shocks, respectively. Indeed, an increase in attention means that the investor
increases the weight assigned to information provided by news. First, this
increases stock-return volatility by accelerating the transmission of news into
prices. Second, it disconnects prices from dividend shocks and strengthens the
connection between prices and news. The latter implication is supported by
Garcia (2013), who shows that the predictability of stock returns using news
content is concentrated in recessions (according to our calibration, during times
of high attention).

Although our model generates excess volatility—volatility of consumption is
close to 1% in our calibration—the model does not match the average level of
volatility observed in the data. In Section 4.2, we further extend the model

22 Similar decompositions of variance are presented by David (1997), Veronesi (1999, 2000), David and Veronesi
(2013), and Brennan and Xia (2001).

23 Note that if we had considered an exponential quadratic form for the price-dividend ratio instead of an exponential
affine form, then this statement would be altered because I

f̂
/I and Iφ/I would become functions of the state

variables. Nonetheless, we find in separate calculations that an exponential quadratic form yields exactly the
same results.
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Figure 3
Attention, uncertainty, and volatility
This figure depicts the model-implied relationship between attention, uncertainty, and volatility. Uncertainty γ
is scaled between zero and one for convenience. Parameter values are presented in Table 1.

to account for dividend leverage and obtain an average level of volatility
much closer to its empirical counterpart. Furthermore, our model implies
countercyclical volatility24 because volatility increases with attention and,
according to our estimation, attention is countercyclical. Several equilibrium
models (e.g., Campbell and Cochrane 1999, Veronesi 1999, Bansal and Yaron
2004) are able to explain both the level and the countercyclical nature of stock-
return volatility. Therefore, we choose to focus on and test the novel prediction
of our model, namely, the positive and quadratic relationship between attention,
uncertainty, and stock-return variance.

We now turn to the empirical evaluation of our main predictions regarding
stock-return volatility. First, we test whether the variance of stock return
increases with attention and uncertainty. Second, we test whether this increasing
relationship, if it exists, is quadratic. With this aim, we use three time series: (1)
the variance of S&P 500 returns, obtained through a GARCH(1,1) estimation,
(2) the Google attention index described in Section 1.5, and (3) a measure
of cross-sectional dispersion of 1-quarter-ahead real GDP growth forecasts
obtained from the Federal Reserve Bank of Philadelphia. Under reasonable
assumptions, the distribution of forecasts matches the distribution of beliefs
(see Laster, Bennett, and Geoum 1999), and thus it is common practice to use
the cross-sectional dispersion of analyst forecasts as a proxy for uncertainty. The
Google attention index contains data since 2004, whereas the cross-sectional

24 See for example Schwert (1989) and Mele (2008) for empirical evidence of countercyclical volatility.
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dispersion of analyst forecasts is available at a quarterly frequency. This results
in a quarterly data set from Q1:2004 to Q4:2012.

Two concerns have to be addressed when performing this exercise. First, it
is possible that investors become more attentive precisely because volatility
increases, and not the other way around. To eliminate this concern, we
control for lagged variance in our regressions.25 Note that adding lagged
variance to the regressions also controls for the persistence in variance.
Second, uncertainty depends heavily on attention: when investors pay more
attention, they observe a more informative signal, which reduces the amount
of uncertainty about fundamentals. In the context of Equation (37), γt depends
on recent values of �.26 To control for this effect, we include lagged attention
and lagged uncertainty in the regressions. It is worth mentioning that adding
these explanatory variables also controls for the persistence in attention and
uncertainty.

The results are presented in Table 3. We perform four ordinary least squares
regressions. We start by regressing stock return variance on attention and
uncertainty (“linear” regressions, Columns 1 and 2), then we add quadratic
terms to analyze the nonlinear relationship (“quadratic” regressions, Columns
3 and 4). Both the linear and quadratic regressions are conducted in two
specifications. Columns 1 and 3 do not control for the relationship between
attention and uncertainty, whereas Columns 2 and 4 do. We control for the
persistence in variance in each regression.

The loadings on attention and uncertainty are positive and significant in the
full linear regression (Column 2), and this lends support to our prediction that
stock return variance increases with both attention and uncertainty. However,
the nonlinear relationship receives somewhat mixed support in the data. The
loading on squared attention is positive and significant in specification (3) only,
and the loading on squared uncertainty is positive and significant in specification
(4) only. In addition, the loading on attention itself is negative and significant in
specification (3), suggesting that variance increases quadratically with attention
only for sufficiently large values of attention.27

Overall, the data confirm that the variance of stock returns increases with
attention and uncertainty.The nonlinear relationship presented in Equation (37),
however, finds only partial support because none of the regressions confirm that
variance increases strictly and quadratically with both attention and uncertainty.

25 As an additional test, we regress attention on lagged variance. The slope coefficient obtained is not significant,
and the adjusted R2 is 0.003. This provides evidence that lagged volatility does not seem to drive attention (at
least at a quarterly frequency).

26 We thank an anonymous referee for drawing our attention to this. A regression of current uncertainty on lagged
attention (up to three lags) and lagged uncertainty (one lag) provides significant coefficients, thus suggesting that
attention is indeed a strong driver of future uncertainty.

27 Attention needs to be larger than 0.26 for the increasing quadratic relationship to apply. When attention is lower
than 0.26, variance decreases quadratically with attention.
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Table 3
OLS regressions of stock return variance on attention and uncertainty

(1) (2) (3) (4)

Intercept −0.003 0 0.01∗∗ 0.011∗∗∗
(0.005) (0.002) (0.004) (0.004)

Attt 0.026 0.059∗∗∗ −0.044∗∗∗ 0.039
(0.016) (0.004) (0.011) (0.034)

Unct 0.021∗∗∗ 0.017∗∗ 0.012 −0.019
(0.007) (0.007) (0.009) (0.02)

Att2t 0.086∗∗∗ 0.013
(0.01) (0.031)

Unc2
t 0.008 0.048∗

(0.013) (0.025)
Attt−1 −0.029∗∗∗ −0.022∗∗

(0.003) (0.011)
Attt−2 −0.02∗∗∗ −0.031∗∗

(0.002) (0.012)
Attt−3 −0.003 0.003

(0.005) (0.007)
Unct−1 0 0.003

(0.008) (0.008)
Vart−1 0.594∗∗∗ 0.795∗∗∗ 0.548∗∗∗ 0.617∗∗∗

(0.091) (0.081) (0.066) (0.083)

Adj. R2 0.712 0.898 0.851 0.905
N 35 33 35 33

The table provides the outputs of four regressions: (1) variance on attention and uncertainty, controlling for
lagged variance, (2) variance on attention and uncertainty, controlling for lagged variance, lagged attention, and
lagged uncertainty, (3) same as (1) but with quadratic terms added, and (4) same as (2) but with quadratic terms
added. The data set comprises thirty-six data points at a quarterly frequency from Q1:2004 to Q4:2012. The
Newey-West standard errors are reported in brackets and statistical significance at the 10%, 5%, and 1% levels
is labeled ∗, ∗∗, and ∗∗∗, respectively.

3. Attention, Uncertainty, and Risk Premium

Expectations matter for the risk premium for two reasons. First, they represent
investors’ beliefs about the speed of economic growth. This is reflected
in the estimated fundamental, f̂t , which enters price valuations. Second, if
expectations are volatile, then investors require a higher risk premium. This is
reflected in the volatility of the filtered fundamental, σ (f̂t ), which, in turn, is a
mixture of attention and uncertainty (see Equation (12)).

It follows from Proposition 2 that the risk premium is

μt−rt =ασδ
[
If̂

I

γt

σδ
+σδ

(
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[
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(
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I

γt

σδ
+σδ

)2

+

(
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I

)2

σ 2
f�

2
t

]
.

(38)

In the CRRA case, the risk premium is summarized by the first term in
Equation (38) because ν =1. Furthermore, if risk aversion is larger than one,
then prices decrease with the filtered fundamental, and thus If̂ /I <0. This
implies that an increase in uncertainty decreases the risk premium (Veronesi,
2000). It is also worth noting that attention does not directly affect the risk
premium in this case.
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Figure 4
Attention, uncertainty, and risk premium
This graph depicts the model-implied relationships among attention, uncertainty, and risk premium. Uncertainty
γ is scaled between zero and one for convenience. Parameter values are presented in Table 1.

When the elasticity of intertemporal substitution and the coefficient of
relative risk aversion are treated separately (ν �=1), the second term in Equation
(38) becomes relevant and complements the uncertainty channel analyzed by
Veronesi (2000). If both the coefficient of risk aversion and the elasticity of
intertemporal substitution are larger than one, then If̂ /I >0 and (1−ν)>0.
This in turn implies that both the first and the second terms in Equation (38)
contribute positively to the risk premium. More precisely, the model predicts,
first, that the risk premium increases with both attention and uncertainty, and
second, that this relationship is quadratic. The model-implied relationships
between attention, uncertainty, and risk premium are quantified in Figure 4.

The intuition as to why the risk premium depends positively on attention and
uncertainty is the following: high uncertainty means that the investor has an
inaccurate forecast of the future dividend growth rate, whereas high attention
means fast incorporation of news into prices and consequently volatile returns.
To bear these two risks, investors require a large risk premium.

Consistent with empirical findings of Campbell and Shiller (1988) and Fama
and French (1989), our model of fluctuating attention generates counter-cyclical
risk premia. The reason is that the risk premium increases with attention
and that attention is countercyclical. Several models are able to explain the
countercyclical nature of risk premia (see, e.g., Campbell and Cochrane 1999,
Bansal and Yaron 2004). We therefore choose to focus on and test the novel
prediction of our model, namely, the increasing and quadratic relationship
between attention, uncertainty, and risk premia.
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We test the two main predictions of the model regarding risk premia. The
first and most fundamental prediction suggests that the risk premium increases
with attention and uncertainty. The second and more precise prediction says
that the risk premium increases quadratically with attention and uncertainty.
Our empirical analysis considers two different measures of equity risk premia:
(1) the adjusted fitted values obtained by performing a predictive regression
of future returns on current dividend yields28 and (2) the quarterly survey
responses reported by Graham and Harvey (2013). This survey was conducted
over more than ten years, from June 2000 to December 2012. The survey data
consist in a total of 17,500 survey responses, with an average of 352 individual
responses each quarter. The empirical measures of attention and uncertainty
are the same as those discussed in the previous section, resulting in a quarterly
data set from Q1:2004 to Q4:2012.

As in Section 2, we perform a regression analysis and control for the
persistence in the risk premium, for the relationship between attention and
uncertainty and for the persistence in attention and uncertainty.29 The results
are shown in Table 4, which is divided in two parts. The left part shows the
regression coefficients when the equity risk premium results from the predictive
regression, whereas the right part uses Graham and Harvey’s survey responses.

Turning to the “linear” regressions (Columns 1−2 and 5−6), the loading
on attention is positive and significant in the full specifications (2) and (6), in
line with the prediction of the model. The loading on uncertainty, however, is
positive and significant in specification (2) only. These results show that the first
prediction is better supported by the data when risk premia are measured via the
predictive regression. The quadratic specifications show that the data are only
weakly supportive of the quadratic relationships between attention, uncertainty,
and the risk premium. Indeed, the loading on squared attention is positive
and significant in specifications (3) and (7) only, and the loading on squared
uncertainty is positive and significant in specification (4) only. Furthermore,
the loading on attention itself is negative and significant in specifications (3)
and (7), implying an increasing quadratic relationship between attention and
risk premia only for attention values larger than 0.32 and 0.39, respectively.
Once all controls are present, attention loses all of its quadratic explanatory
power, whereas risk premia increase strictly and quadratically with uncertainty
in specification (4) only.

Overall, the data offer support for positive relationships between attention,
uncertainty, and the risk premium. These results are in line with those of Massa
and Simonov (2005) and Ozoguz (2009), who find that investors require a risk

28 Regressing 1-quarter-ahead S&P 500 returns on current dividend yields between Q2:1950 and Q4:2012 provides
a positive and significant slope coefficient at the 95% confidence level. Our measure of risk premia is then
obtained by subtracting the 3-month risk-free rates from the fitted values.

29 The risk premium, attention, and uncertainty are significantly autocorrelated. In addition, attention drives future
uncertainty. Therefore, we include lagged values of the risk premium, attention, and uncertainty in the regressions
to rule out spurious relationships.
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Table 4
OLS regressions of risk premium on attention and uncertainty

RP from predictive regressions RP from survey

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept −0.009 0.001 0.003 0.016∗ 0.01∗∗∗ 0.009∗∗∗ 0.016∗∗∗ 0.015∗
(0.006) (0.003) (0.007) (0.009) (0.004) (0.003) (0.005) (0.008)

Attt 0.026 0.06∗∗∗ −0.067∗∗ 0.058∗ 0.001 0.009∗∗∗ −0.013∗ 0.01
(0.019) (0.004) (0.025) (0.03) (0.005) (0.001) (0.008) (0.009)

Unct 0.014 0.027∗∗ 0.028 −0.039 0.001 −0.004 −0.005 −0.017
(0.016) (0.012) (0.026) (0.038) (0.004) (0.005) (0.008) (0.012)

Att2t 0.105∗∗∗ −0.006 0.017∗∗∗ −0.001
(0.02) (0.027) (0.006) (0.009)

Unc2
t −0.008 0.09∗∗ 0.006 0.019

(0.027) (0.043) (0.01) (0.022)
Attt−1 −0.005 −0.011 0.005∗∗ 0.003

(0.007) (0.009) (0.002) (0.004)
Attt−2 −0.046∗∗∗ −0.072∗∗∗ −0.009∗∗∗ −0.014∗

(0.006) (0.012) (0.003) (0.008)
Attt−3 −0.016∗∗∗ −0.002 −0.008∗∗∗ −0.005

(0.005) (0.007) (0.003) (0.006)
Unct−1 −0.01 −0.011 0.003 0.002

(0.009) (0.01) (0.005) (0.006)
RPt−1 0.924∗∗∗ 0.925∗∗∗ 0.809∗∗∗ 0.85∗∗∗ 0.682∗∗∗ 0.773∗∗∗ 0.608∗∗∗ 0.694∗∗∗

(0.085) (0.055) (0.089) (0.081) (0.137) (0.106) (0.128) (0.168)

Adj. R2 0.874 0.945 0.905 0.95 0.439 0.622 0.447 0.604
N 35 33 35 33 35 33 35 33

The table is divided into two parts that differ in the measure of the risk premium (predictive regression or survey).
Each part shows the results from four regressions: (1) risk premium on attention and uncertainty, controlling
for lagged risk premium, (2) risk premium on attention and uncertainty, controlling for lagged risk premium,
lagged attention, and lagged uncertainty, (3) same as (1) but with quadratic terms added, and (4) same as (2) but
with quadratic terms added. The data set comprises thirty-six data points at quarterly frequency from Q1:2004
to Q4:2012. The Newey-West standard errors are reported in brackets, and statistical significance at the 10%,
5%, and 1% levels is labeled ∗, ∗∗, and ∗∗∗, respectively.

premium in order to be compensated for high uncertainty. We complement these
studies by showing that, besides uncertainty, investors’attention is also a priced
risk factor. Finally, it is worth noting that, because the variance of stock returns
and the risk premium are countercyclical and increase with both attention and
uncertainty, attention and uncertainty might be reasonable forecasts of future
economic downturns.

4. Extensions

This section considers two extensions of our model. The first part describes a
model in which attention depends on stock-return surprises.30 The second part
describes a model that accounts for dividend leverage (Abel 1999). Overall,
these extensions help our model to better fit observed asset pricing moments,
while maintaining the positive relationship between attention/uncertainty and
risk premium/volatility.

30 This extension is consistent with evidence provided by Vozlyublennaia (2014), who shows that a change in
return, especially a decline, significantly influences investor attention to securities.
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4.1 Attention driven by return surprises
Assume that the performance index depends on past return surprises, as follows:

φt =
∫ t

0
e−ω(t−u)

(
dSu+δudu

Su
−μudu

)
. (39)

Applying Itô’s lemma to Equation (39) yields the following dynamics:

dφt =−ωφdt +σtdWt , (40)

where σ ≡(σ1t σ2t
)

is the stock-return diffusion vector.
The one-to-one mapping between attention and the performance index is

provided in definition 1. As before, we approximate the price-dividend ratio by
the exponential form presented in Equation (26). Applying Itô’s lemma to that
equation yields the following functional form for the stock-return diffusion:

σt ≡
(
σ1t σ2t

)
=
(
σδ+β11

γt
σδ

+β12σ1t β11σf�t +β12σ2t

)
. (41)

Solving for σ1 and σ2 yields

σt =
(
β11γt+σ

2
δ

(1−β12)σδ

β11σf �t
1−β12

)
. (42)

Note that now the performance index features stochastic volatility, as returns
do. Substituting the above expression in the dynamics of the performance index
φ and proceeding exactly as in Section 1.4 yields the price-dividend ratio. When
attention depends on return surprises, the price-dividend ratio satisfies

I (x)≈eβ0+β11f̂ +β12φ+β13γ , (43)

where x is the vector of state variables and

β0 =3.6156, β11 =1.1207, β12 =−0.0006, β13 =−11.3618. (44)

The loadings in the regular model are β0 =3.6152, β11 =1.1207, β12 =
−0.0006, and β13 =−11.3741. Comparing them with the loadings presented in
(44) shows that the price-dividend ratio does not depend on whether attention
is driven by dividend or return surprises. In addition, because β12 is small, the
diffusion of the price-dividend ratio is similar in both cases. Consequently, the
levels of the price-dividend ratio, risk-free rate, stock-return volatility, market
prices of risks, and risk premia are very close to one another in both cases.

Table 5 presents the unconditional asset pricing moments resulting from
20,000 simulations of daily data considered over a period of 100 years. Columns
1 and 2 confirm that the average levels of the price-dividend, risk-free rate,
stock-return volatility, and risk premia are basically the same for both attention
specifications.

Because returns are more volatile than dividend growth rates, the
return-driven performance index is more volatile than the dividend-driven
performance index. This implies that the return-driven attention is more volatile
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Table 5
Unconditional moments from simulations

Parameter Symbol (1) (2) (3) (4)
�(δ) �(S) �(δ) �(D)

Leverage Leverage

Mean price dividend E(I ) 38.24 38.26 28.23 28.29

Volatility price dividend Vol
(
dI
I

)
2.73% 2.74% 8.02% 8.06%

Mean risk premium E(μ−r) 2.56% 2.46% 6.76% 6.72%
Volatility risk premium Vol(d(μ−r)) 1.27% 2.52% 3.72% 5.58%
Mean risk-free rate E(r) 2.93% 2.96% 2.93% 2.96%
Volatility risk-free rate Vol(dr) 1.77% 2.24% 1.77% 2.04%
Mean return volatility E(||σ ||) 3.98% 3.92% 10.49% 10.40%
Volatility of return volatility Vol(d||σ ||) 0.83% 1.37% 2.70% 4.10%

Columns 1 and 2 show the unconditional asset-pricing moments when attention depends on dividend surprises
and return surprises, respectively. Dividend is equal to consumption in these two cases. In Columns 3 and 4,
attention depends on consumption surprises and dividend surprises, respectively. The dividend satisfies D≡δη ,
where η=2 is the dividend leverage parameter. Simulations (20,000) of daily data are performed over a 100-year
period. First, averages are computed over each time series to provide 20,000 estimates. Then the median of the
20,000 estimates is reported above. Percentages are annualized.

than the dividend-driven attention. Consequently, the variables that depend
significantly on attention inherit a larger unconditional volatility in the return-
driven attention case than in the dividend-driven attention case. As shown
in Proposition 2 and Equations (37) and (38), these variables are the market
prices of risk, the risk-free rate, the stock-return volatility, and the risk premium.
Columns 1 and 2 of Table 5 show that the volatility of risk premia indeed doubles
when we move from the dividend-driven attention case to the return-driven
attention case.

Aleading explanation of the high volatility of risk premia is offered by Chien,
Cole, and Lustig (2012), who show that the presence of traders who rebalance
their portfolios infrequently amplifies the effects of aggregate shocks on the
time variation in risk premia by a factor of three. Our potential explanation
resides in the fact that investors become more attentive to news when return
surprises (as opposed to dividend surprises) decline, and vice versa. Therefore,
the volatility of risk premia increases by a factor of two, the volatility of
volatility increases by a factor of 1.65, but the volatility of the risk-free rate is
not excessively amplified (it increases by a factor of only 1.27).

4.2 Dividend leverage
Another extension of our model consists of pricing a dividend stream that
accounts for dividend leverage. Abel (1999) introduces dividend leverage
(levered equity) in an equilibrium model and obtains a low variability of the
riskless rate along with a large equity premium. In the context of our model,
we introduce levered equity by defining the dividend paid by the stock to be
D≡δη. The parameter η thus provides a convenient way to model dividend
leverage. Consistent with the estimations performed by Bansal, Dittmar, and
Lundblad (2005), we set the dividend leverage parameter to η=2.
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We solve for the price-dividend ratio in two different cases. In the first
case, attention depends on consumption surprises. In the second case, attention
depends on dividend surprises. Note that the only difference between these two
cases resides in the fact that the volatility of dividend surprises is equal to η
times the volatility of consumption surprises.

The price-dividend ratio satisfies

I i(x)≈eβi0+βi11f̂ +βi12φ+βi13γ , (45)

where x is the vector of state variables and i∈{δ,D} stands for the case in
which attention depends on surprises in state i. The loadings appearing in (45)
are obtained by linearizing and solving the following equation:

ridt =E
Q
t

(
dSi +Ddt

Si

)
, (46)

=E
Q
t

(
dI i

I i
+
dD

D
+
dI i

I i

dD

D

)
+

1

I i
dt, (47)

where Q is the risk-neutral measure and Si and ri are the equilibrium stock
price and risk-free rate obtained when attention is driven by surprises in state
i∈{δ,D}, respectively.

The values of the loadings are as follows:

βδ0 =3.2595, βD0 =3.2602, (48)

βδ11 =3.2924, βD11 =3.2926, (49)

βδ12 =−0.0030, βD12 =−0.0028, (50)

βδ13 =−53.0946, βD13 =−53.0804. (51)

The loadings in the regular model are β0 =3.6152, β11 =1.1207, β12 =
−0.0006, and β13 =−11.3741. Comparing them with the loading presented
in (48) shows that leverage significantly increases the sensitivity of the price-
dividend ratio to changes in the state variables. Indeed, leverage increases the
sensitivity to the estimated fundamental by a factor three and the sensitivity
to attention and uncertainty by a factor five. In addition, the loadings
provided in (48) show that the level of the price-dividend ratio in both the
consumption-driven and dividend-driven attention cases is sensibly the same.

Columns 3 and 4 of Table 5 provide the asset-pricing moments obtained
in the consumption-driven and dividend-driven attention cases with leverage,
respectively. Because leverage significantly increases the sensitivity of the
price-dividend ratio to state variables, the average level of stock-return
volatility, price-dividend-ratio volatility, and risk premium are significantly
magnified. Leverage increases these quantities by a factor of roughly three,
which helps our model to better fit observed levels of volatilities and risk
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premia. Note also that risk-premium volatility, risk-free rate volatility, and
volatility of return volatility are larger in the dividend-driven attention case
than in the consumption-driven attention case. The reason is that the volatility
of dividend surprises is twice as large as the volatility of consumption surprises.

5. Concluding Remarks

We have developed an asset-pricing model in which investors’ attention and
learning uncertainty simultaneously affect the dynamics of asset returns. The
model predicts that volatility and the risk premium increase with attention and
uncertainty. These predictions are supported by our empirical analysis.Also, the
theoretical relationships between attention, uncertainty, and the volatility/risk
premium are quadratic. This prediction finds mixed support in the data.

We hope that this paper represents a useful step forward in the important task
of understanding the effect of learning on asset prices. Several extensions of the
present model deserve to be addressed in future research. Here, we summarize
a few of them.

The model can be adapted to include the dispersion of beliefs. Massa and
Simonov (2005) show that the dispersion of beliefs is a priced factor, and Carlin,
Longstaff, and Matoba (Forthcoming) find that disagreement is time-varying
and is associated with higher expected returns, higher return volatility, higher
uncertainty, and larger trading volume. It is therefore of interest to study the
impact of fluctuating attention on disagreement and ultimately on asset prices.
Our conjecture is that if investors learn from different sources of information,
or if they have different priors, spikes in investors’ attention might contribute
to polarization of beliefs, which could further amplify the volatility and the risk
premium in the market.

Another possible extension is concerned with overconfidence: higher
attention to news might exacerbate the subjective confidence in investors’
judgments, further increasing the volatility of asset prices, as in Dumas,
Kurshev, and Uppal (2009). It also would be worthwhile to disentangle attention
to news and attention to wealth: evidence (Karlsson, Loewenstein, and Seppi
2009) suggests that retail investors temporarily ignore their portfolios in
bad times, and thus liquidity dries up when the market suffers downturns;
examples are the Asian crisis of 1997, the Russian debt default in 1998, and
the “credit crunch” of 2008. This effect can be reinforced by fluctuations in
investors’ attention to news. Finally, our model assumes that a single factor
(the performance index) drives investors’ attention. Other exogenous events
unrelated to the economy can temporarily grab investors’ attention, generating
further fluctuations in volatility and trading volume: see, for example, the
anecdote about Tiger Woods and the New York Stock Exchange volume
in Duffie (2010) Presidential Address; trading on all U.S. stock exchanges
declined during Wood’s live televised speech and shot up once the speech
ended, suggesting that investors do not pay constant attention to financial news.
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A. Appendix

A.1 Unconditional Moments of the Performance Index φ and Probability Density Function
of the Attention �

Consider

Yt =

[
ft
φt

]
, dYt =(A−BYt )dt +C

[
dZ

f
t

dZδt

]
with
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[
λ 0
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0 σδ
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.

The solution is found by applying Itô’s lemma to
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.

After integrating from 0 to t , we obtain
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Thus, the first moments of f and φ solve the following system of equations:{
eλtE[ft ]−f0 = f̄

(
eλt−1

)
eωtE[φt ]−φ0 =0.

It follows that the long-term mean of f is f̄ , and the long-term mean of φ is 0. The variance of f
is found with the standard formula
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A.2 Details on ζ , f̂ , φ, and γ
We have

dft =
(
λf̄ +(−λ)ft

)
dt +σf dZ

f
t +
[
0 0

][dZδt
dZst

]
(A.2)

or (as in Liptser and Shiryaev 2001)

dft =[a0 (t,ϑ)+a1 (t,ϑ)ft ]dt +b1 (t,ϑ)dZft +b2 (t,ϑ)

[
dZδt
dZst

]
. (A.3)

In addition, the observable process is given by
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or

dϑt =[A0 (t,ϑ)+A1 (t,ϑ)ft ]dt +B1 (t,ϑ)dZft +B2 (t,ϑ)

[
dZδt
dZst

]
. (A.5)

Using Liptser and Shiryaev’s notations, we get
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(A.6)

Then Theorem 12.7 (Liptser and Shiryaev 2001) shows that the filter evolves according to

df̂t =
[
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]
dt +

[
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]
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(A.7)

where γ represents the posterior variance. Notice that the dynamics of γ depend on φ through
the term b◦B. Consequently, we cannot follow Scheinkman and Xiong (2003) and solve for the
steady state. We have no other choice but to include the posterior variance γ in the state space.

A.3 Solutions for ζ , f̂ , φ, and γ
Because the dividend process δ is a geometric Brownian motion, its solution is immediately given
by

δt =δve
∫ t
v f̂udu− 1

2 σ
2
δ

(t−v)+σδ (Wδt −Wδv )
, t≥v. (A.8)

To solve for f̂ and φ, we notice that the vector defined by

Yt =

[
f̂t
φt

]
, dYt =(A−BYt )dt +C

[
dWδ

t

dWs
t

]
with

B =

[
λ 0
0 ω

]
(A.9)

C =

[
γt
σδ

σf �t

σδ 0

]
(A.10)
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as a bivariate Ornstein-Uhlenbeck process. The solution is found by applying Itô’s lemma to

Ft =eBtYt =

[
eλt f̂t
eωtφt

]
.

The dynamics of F obey

dFt =

⎡⎣ etλ
(
σf σδ�t dW

s
t +γt dWδt +dtλf̄ σδ

)
σδ

etωσδdW
δ
t

⎤⎦. (A.11)

After integrating from v to t and rearranging, we obtain

f̂t =e−λ(t−v)f̂v + f̄
(

1−e−λ(t−v)
)

+
1

σδ

∫ t

v

e−λ(t−u)γudW
δ
u +σf

∫ t

v

e−λ(t−u)�udW
s
u (A.12)

φt =e−ω(t−v)φv +
∫ t

v

σδe
−ω(t−u)dWδ

u . (A.13)

The dynamics of the posterior variance γ can be rewritten as

∂

∂t

[
Gt Ft

]
=
[
Gt Ft

][ −2λ 1
σ2
δ

σ 2
f (1−�2

t ) 0

]
,

where γt = Gt
Ft

. The solution is obtained through exponentiation and is given by

γt =

σδ

(
σδ
(
iv,t−�λγv

)
sinh

(√
�

√
iv,t +�λ2σ2

δ
σδ

)
+
√
�γv

√
iv,t +�λ2σ 2

δ cosh

(√
�

√
iv,t +�λ2σ2

δ
σδ

))

�
(
γv +λσ 2

δ

)
sinh

(√
�

√
iv,t +�λ2σ2

δ
σδ

)
+
√
�σδ

√
iv,t +�λ2σ 2

δ cosh

(√
�

√
iv,t +�λ2σ2

δ
σδ

) ,

(A.14)

where

�= t−v

iv,t =σ 2
f

∫ t

v

(1−�2
u)du.

A.4 Moment Conditions
Note that γ depends on the attention �; � depends on the dividend performance φ; and φ is
driven by surprises in the dividend growth. Hence, the posterior variance γt , the attention �t , and
the dividend performance index φt , for t =0,�,...,T �, have to be constructed recursively. These
(implicit) time series are used for some of the moment conditions that follow.

We approximate the continuous-time processes by using the following simple discretization
scheme ∫ t2

t1

κ1,udu≈κ1,t1�

∫ t2

t1

κ2,udWu≈κ2,t1εt1+�,

where κ1 and κ2 are some arbitrary processes, �= t2 −t1 = 1
4 , and εt1+�∼N (0,�).
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A.4.1 Conditional mean of f̂t+�. We have

f̂t+� =e−λ�f̂t + f̄
(
1−e−λ�)+

1

σδ

∫ t+�

t

e−λ(t+�−u)γudW
δ
u +σf

∫ t+�

t

e−λ(t+�−u)�udW
s
u.

(A.15)

The following moment condition must hold

Et

[
f̂t+�

]
=e−λ�f̂t + f̄

(
1−e−λ�). (A.16)

The empirical counterpart is

0=
1

T

t∑
i=1

[
f̂i�−e−λ�f̂(i−1)�− f̄ (1−e−λ�)]. (A.17)

The Federal Reserve Bank of Philadelphia provides not only the 1-quarter-ahead forecast (which
in our case is denoted by f̂t ), but also 2- and 3-quarter ahead forecasts; that is g1,t ≡Et [f̂t+�] and
g2,t ≡Et [f̂t+2�]. This establishes two additional moment conditions as follows:

g1,t =e−λ�f̂t + f̄
(
1−e−λ�) (A.18)

and

g2,t =e−λ�g1,t + f̄
(
1−e−λ�). (A.19)

Their empirical counterparts are

0=
1

T

t∑
i=1

[
g1,i�−e−λ�f̂i�− f̄ (1−e−λ�)], (A.20)

0=
1

T

t∑
i=1

[
g2,i�−e−λ�g1,i�− f̄ (1−e−λ�)]. (A.21)

A.4.2 Unconditional autocovariance of f̂t . We have

Cov
(
f̂t+�,f̂t

)
=e−λ�Var

(
f̂t

)
. (A.22)

The empirical counterpart is

0=
1

T

T∑
i=1

[(
f̂i�−μf̂ ,1:T

)(
f̂(i−1)�−μf̂ ,0:T−1

)
−e−λ�

(
f̂(i−1)�−μf̂ ,0:T−1

)2
]
, (A.23)

where μ(·) represents the sample average.

A.4.3 Unconditional autocovariance of φt . We have

Cov(φt+�,φt )=e−ω�Var(φt ). (A.24)

The empirical counterpart is

0=
1

T

T∑
i=1

[(
φi�−μφ,1:T

)(
φ(i−1)�−μφ,0:T−1

)−e−ω�(φ(i−1)�−μφ,0:T−1
)2]
. (A.25)
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A.4.4 Unconditional variance of φt . We have

Var(φt )=
σ 2
δ

2ω
. (A.26)

The empirical counterpart is

0=
1

T

T∑
i=1

[(
φi�−μφ,1:T

)2]− σ 2
δ

2ω
. (A.27)

A.4.5 Conditional variance of f̂t+�. Take the first diffusion term in Equation (A.15):

Vart

(
1

σδ

∫ t+�

t

e−λ(t+�−u)γudW
δ
u

)
=

1

σ 2
δ

e−2λ(t+�)
Et

[(∫ t+�

t

eλuγudW
δ
u

)2
]

=
1

σ 2
δ

e−2λ(t+�)
Et

[∫ t+�

t

e2λuγ 2
u du

]

≈ 1

2λσ 2
δ

γ 2
t

(
1−e−2λ�

)
.

(A.28)

The second equality in Equation (A.28) results from Itô isometry, whereas the third equality comes
from the approximation γu≈γt . The variance of the second diffusion term in Equation (A.15) is
obtained similarly. The conditional variance of f̂t+� is then

Vart
(
f̂t+�

)
=

(
γ 2
t

σ 2
δ

+σ 2
f �

2
t

)
1−e−2λ�

2λ
, (A.29)

which represents a moment condition. Its empirical counterpart is

0=
1

T

T∑
i=1

[(
f̂i�−e−λ�f̂(i−1)�− f̄ (1−e−λ�))2 −

(
γ 2

(i−1)�

σ 2
δ

+σ 2
f �

2
(i−1)�

)
1−e−2λ�

2λ

]
.

(A.30)

A.4.6 Conditional variance of φt+�. We know that

φt+� =φt e
−ω�+σδ

∫ t+�

t

e−ω(t+�−u)dWδ
u . (A.31)

Thus,

Vart (φt+�) = σ 2
δ e

−2ω(t+�)
Et

[(∫ t+�

t

eωudWδ
u

)2
]

= σ 2
δ e

−2ω(t+�)
Et

[∫ t+�

t

e2ωudu

]
=

σ2
δ

2ω

(
1−e−2ω�

)
.

(A.32)

The empirical counterpart is

0=
1

T

T∑
i=1

[(
φi�−e−ω�φ(i−1)�

)2 − σ 2
δ

2ω

(
1−e−2ω�

)]
. (A.33)

The second equality in Equation (A.32) results from Ito isometry.
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A.4.7 Unconditional mean of�t . The process� has a long-term mean that can be approximated
by �̄. Therefore, one can write

E[�t ]≈�̄. (A.34)

The empirical counterpart is

0=
1

T

T∑
i=1

[
�i�−�̄]. (A.35)

A.4.8 Unconditional variance of �t . The unconditional variance of attention implied by our
model should match the unconditional variance of the Google attention index (which has been
adjusted to take values between zero and one). That is,

Var[�t ]=0.054. (A.36)

The empirical counterpart is

0=
1

T

T∑
i=1

[(
�i�−μ�,1:T

)2 −0.054
]
. (A.37)

A.4.9 Unconditional variance of dδt
δt

− f̂t dt . We define the observable process d as follows

dt+�≡ log
δt+�

δt
− f̂t�=− 1

2
σ 2
δ �+σδε

δ
t+�. (A.38)

Thus, we can write

Var(dt+�)=σ 2
δ �. (A.39)

The empirical counterpart is

0=
1

T

T∑
i=1

[(
di�−μd,1:T

)2 −σ 2
δ �
]
. (A.40)

To summarize, there are eleven boxed equations defining a system of eleven moment conditions
used to estimate the 7-dimensional vector of parameters �=(λ,f̄ ,ω,�̄,�,σf ,σδ)�.
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