
Economic Uncertainty and Investor Attention

Daniel Andrei∗ Henry Friedman† N. Bugra Ozel‡

May 1, 2023

Abstract

This paper develops a multi-firm equilibrium model of information acquisition based
on differences in firms’ characteristics. The model shows that heightened economic
uncertainty amplifies stock price reactions to earnings announcements via increased
investor attention, which varies by firm characteristics. Firms with higher systematic
risk or more informative announcements attract more attention and exhibit stronger
reactions to earnings announcements. Moreover, heightened investor attention caused
by high economic uncertainty leads to a steeper CAPM relation and higher betas for
announcing firms. Empirical analyses using firm-level attention measures and CAPM
tests on high- versus low-attention days support the model’s predictions.
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1 Introduction

We explore the impact of economic uncertainty and investor attention on asset prices in

a multi-firm equilibrium model of information acquisition. The motivation for this inquiry

starts with a large body of theoretical and empirical research that studies the tradeoffs im-

posed by the limited attention theory (Sims, 2003; Hirshleifer and Teoh, 2003; Peng, 2005).

Limited attention models can explain a wide array of phenomena, such as the home bias puz-

zle (Van Nieuwerburgh and Veldkamp, 2009), investment and attention allocation behavior

(Van Nieuwerburgh and Veldkamp, 2010), the attention allocation of mutual fund managers

(Kacperczyk, Van Nieuwerburgh, and Veldkamp, 2016), or the comovement of asset returns

(Peng and Xiong, 2006; Veldkamp, 2006). Despite these findings, important questions remain

unanswered. Specifically, how are investors’ attention choices priced in financial markets, par-

ticularly when investors can selectively choose which firms and corporate information to pay

attention to? Additionally, how does systematic and cross-sectional variation in investor at-

tention impact risk exposures as reflected in the capital asset pricing model (CAPM)? Given

the first-order effect that attention has on financial markets (Da, Engelberg, and Gao, 2011;

Andrei and Hasler, 2015), answering the latter question is particularly important. To this

end, we develop an equilibrium model of information acquisition.

Our model is a multi-firm variant of Grossman and Stiglitz (1980), in which firms make

earnings announcements and investors tailor their attention to any combination of firms’

announcements. We focus on earnings announcements because they are salient information

releases by firms that convey firm-specific and, potentially, macroeconomic/systematic infor-

mation. We allow for investors’ attention decisions to depend on the economic uncertainty

investors face. This facilitates predictions about how aggregate uncertainty affects infor-

mation acquisition, investor demand for shares, and the intertwined CAPM pricing of both

corporate announcements and macroeconomic risk.

The model predicts that increased uncertainty attracts more investor attention to firm-

level information, amplifying stock price reactions to the earnings announcements, hereafter

referred to as earnings response coefficients (ERCs). The effect of attention on ERCs varies

predictably with firm-specific factors: ERCs increase incrementally more for firms that have

(i) a stronger exposure to systematic risk; (ii) more informative earnings announcements;

(iii) a more volatile idiosyncratic component in their earnings; and (iv) more noise trading.

The intuition behind all these four cases is that the benefit of collecting information outweighs

its cost for these firms, which attracts more investor attention to their announcements.

Our model also predicts a higher risk premium and a steeper CAPM relation on days of

heightened investor attention caused by high uncertainty. We demonstrate that the beta of
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a firm that announces earnings increases with the fraction of investors who pay attention to

its announcement. Furthermore, when investors are collectively more attentive, resolving un-

certainty, they are rewarded with a higher risk premium (Robichek and Myers, 1966; Epstein

and Turnbull, 1980), which steepens the CAPM relation. While the increase in the market

risk premium due to higher uncertainty is an obvious equilibrium outcome in asset pricing

models, the steepening of the securities market line caused by heightened investor attention is

novel. We also extend the model to show that the impact of uncertainty on attention is more

significant for investors with lower information processing costs (e.g., institutional investors)

and that our main results continue to hold in a dynamic setting.

To test the model’s predictions, we use the VIX as a measure of economic uncertainty

and SEC EDGAR downloads as a proxy for investor attention.1 We find that investors

pay more attention to earnings announcements on days with higher VIX, and that ERCs

are larger for firms that announce on those days. We attribute this effect primarily to the

increase in investor attention. Additionally, we show that our ERC results are concentrated

in firms with high CAPM beta (whose announcements are more likely to convey systematic

information), higher institutional ownership (whose cost of information acquisition is likely

lower), and more noise trading (whose stock prices are likely less informative). Furthermore,

our findings indicate that investor attention is responsible for increased market betas on

earnings announcement days, and we also find empirical support for a steeper CAPM relation

on days with heightened investor attention.

Our study extends prior attention theories in two ways, providing rational explanations for

several empirical findings in the literature previously attributed to behavioral factors. First,

in our setting, firm-level announcements offer valuable information about both announcing

firms and the overall economy. Existing theories overlook such information spillovers and

restrict investors’ attention to systematic or idiosyncratic news (e.g., Peng and Xiong, 2006;

Kacperczyk et al., 2016). In our model, information spillovers result in a positive relationship

between uncertainty and attention and influence firms’ market betas on announcement days.

Information spillovers also result in weaker ERCs with more firms announcing: as the number

of announcements increases, prices convey more market-wide information for free, reducing

attention incentives. This spillover effect contrasts with the explanation in Hirshleifer, Lim,

and Teoh (2009), which attributes weaker ERCs to multiple announcements competing for

investors’ limited attention (a cognitive constraint effect). Lastly, related theories investigate

information spillovers in similar contexts (Patton and Verardo, 2012; Savor and Wilson, 2016),

but do not address the interaction between information spillovers and investor attention or

1As an alternative attention proxy, we confirm our results using Google stock ticker searches attributable
to investors (deHaan, Lawrence, and Litjens, 2021).
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the impact of attention on ERCs and the CAPM equilibrium.

Second, the aggregate amount of attention in our economy fluctuates with incentives tied

to economic uncertainty, whereas previous models bind attention to a fixed capacity con-

straint (Sims, 2003; Peng and Xiong, 2006; Kacperczyk et al., 2016). Our setup relaxes this

constraint and instead assumes that investors face disclosure processing costs (Blankespoor,

deHaan, and Marinovic, 2020). As a result, the aggregate amount of attention increases on

days with higher uncertainty, which explains the steepening of the securities market line.

Conversely, attention decreases on days with lower uncertainty or less informative announce-

ments. This latter result offers an alternative and rational explanation for investors’ inatten-

tion to Friday announcements (DellaVigna and Pollet, 2009; Louis and Sun, 2010; Michaely,

Rubin, and Vedrashko, 2016b). That is, Friday announcers may have different firm charac-

teristics than non-Friday announcers, a prediction consistent with the empirical findings of

Michaely, Rubin, and Vedrashko (2016a).

In a related empirical paper, Hirshleifer and Sheng (2022) also challenge the idea of fixed

attention capacity constraints. They provide evidence that investors can potentially devote

more or less attention to both macro and micro news (see also Eberbach, Uhrig-Homburg, and

Yu, 2021). While our empirical findings are consistent with those in Hirshleifer and Sheng

(2022), different from that study, we build a theory to explain these findings. In addition,

we derive and analyze the cross-sectional implications of investors’ rational responses to

heightened uncertainty using EDGAR (Google) searches.2

Our study adds to the rapidly growing literature that documents a robust beta-return

relation on various occasions: on macroeconomic announcement days; when investor attention

is strong; in months after the U.S. midterm elections; on leading earnings announcement days;

or overnight (Savor and Wilson, 2014; Ben-Rephael, Carlin, Da, and Israelsen, 2021; Chan and

Marsh, 2021a,b). We contribute to this literature by showing theoretically that heightened

investor attention leads to a steeper beta-return relation and increases firms’ market betas

on the days of their announcements.

Overall, our paper shows that economic uncertainty is a key driver of investors’ attention

to firm-level information. Rational attention behavior has critical asset pricing implications.

First, investor attention to firm-level information varies by firms’ characteristics, leading to

differences in ERCs across firms. Second, heightened attention leads to higher market betas

for announcing firms and a steeper securities market line. Consequently, investor attention

may be an underappreciated factor in explaining the cross-section of asset returns.

2Several recent studies use EDGAR data to explore different issues in corporate finance and asset pricing
(e.g., Loughran and McDonald, 2011; DeHaan, Shevlin, and Thornock, 2015; Lee, Ma, and Wang, 2015;
Drake, Roulstone, and Thornock, 2015; Bauguess, Cooney, and Hanley, 2018; Chen, Cohen, Gurun, Lou, and
Malloy, 2020; Chen, Kelly, and Wu, 2020; Gao and Huang, 2020).
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2 Model

Consider an economy populated by a continuum of investors, indexed by i ∈ [0, 1]. The econ-

omy has three dates t ∈ {0, 1, 2}. At t = 0, each investor makes an information acquisition

decision that we will describe below. At t = 1, investors trade competitively in financial

markets. At t = 2, financial assets’ payoffs are realized, and investors derive utility from

consuming their terminal wealth. Investors trade a riskless asset and N risky assets indexed

by n ∈ {1, ..., N}. The riskless asset is in infinitely elastic supply and pays a gross interest

rate of 1 per period. Each risky asset (“firm”) has an equilibrium price Pn at t = 1 and pays

a risky dividend at t = 2:

Dn = bnf + en, for n ∈ {1, ..., N}. (1)

The payoff Dn has a systematic component f and a firm-specific component en. The param-

eters bn, which are heterogeneous across firms and known by investors, dictate the exposures

of firms’ payoffs to the systematic component. Without loss of generality, we assume that

the average of bn across firms is 1.

We denote by D the N × 1 vector of asset payoffs, by P the N × 1 vector of asset prices,

and by Re ≡ D− P the vector of dollar excess return of the risky assets.3 We set the total

number of shares for all assets to M (henceforth the market portfolio), an equal-weighting

vector with all elements equal to 1/N . The future market return is Re
M ≡M′Re. Assuming

an equally-weighted market portfolio M does not impact our results but aids in interpreting

them in empirically measurable terms (elaborated below).

At t = 0, all investors have a common information set F0 that consists of the prior

distributions of f and en:

f ∼ N (0, U2) (2)

en ∼ N (0, σ2
en), for n ∈ {1, ..., N}. (3)

We allow for variances σ2
en to vary in the cross-section of firms. Firm-specific components en

are independent across firms, and f and en are independent ∀n ∈ {1, ..., N}.
We refer to U as uncertainty for the rest of the paper. It represents investors’ expected

forecasting error conditional on information available at time 0, U2 ≡ Var[f |F0]. As we will

show below, in our model U is closely related to investors’ pre-announcement uncertainty

about the future return on the market, which helps us confront the theory with the data.

3Throughout the paper, we will adopt the following notation: we use letters in plain font to indicate
univariate variables and bold letters to indicate vectors and matrices; we use subscripts to indicate individual
assets and superscripts to indicate individual investors. Appendix A.1 provides further details.
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Defining U as uncertainty is the simplest way to derive theoretical predictions. Alterna-

tively, we could be more specific about the information set F0, without any impact on the

results. Assuming, for instance, that before time 0 investors hold the prior f ∼ N (0, σ2
f ), and

that at time 0 they observe public information about f under the form of a signal G = f + g

with g ∼ N (0, σ2
g), Bayesian updating implies

U2 = Var[f |F0] =
σ2
fσ

2
g

σ2
f + σ2

g

. (4)

A higher variance σ2
f of the fundamental or a higher variance σ2

g of the noise in public infor-

mation increases investors’ uncertainty at time 0. Thus, our results come through whether

U measures uncertainty in macro fundamentals or captures noise in the available public

information at time 0. We therefore keep our model agnostic about what determines U .4

A total of A ≤ N firms issue earnings announcements at t = 1. We denote the set of

announcing firms by A ≡ {1, ..., A}. As in Teoh and Wong (1993), earnings announcements

convey information about firms’ future dividends:

Ea = Da + εa, for a ∈ A, (5)

where the earnings noise shocks εa are independently distributed, εa ∼ N (0, σ2
εa), and drawn

independently from f and en, ∀a ∈ A and ∀n ∈ {1, ..., N}.
At t = 0, each investor i chooses whether or not to be attentive to the earnings announce-

ments. Investor i can pay attention to announcements made by the firms in any of the 2A

possible subsets of A. (The set of all subsets of A represents the power set of A, or P(A),

and includes the empty set ∅ and A itself.) Thus, there are potentially 2A investor types,

indexed by k ∈ P(A). For instance, investors who choose to stay uninformed are of type

k = ∅; investors who pay attention to all earnings announcements are of type k = A. We use

the dummy variable Ika , with a ∈ A and k ∈P(A), to indicate type k investor’s decision to

pay attention to Ea: if a ∈ k, then Ika = 1; otherwise, Ika = 0.

Each investor starts with zero initial wealth and maximizes expected utility at time 0,

max
k∈P(A)

E0

[
max

qk
Ek1
[
−e−γ(Wk−c|k|)

]]
, (6)

where qk is the optimal portfolio of a type k investor and |k| denotes the cardinality of the

set k, or |k| =
∑

a∈A I
k
a .

4We discuss the introduction of an additional layer of information acquisition in Section 3.2 using a
dynamic version of the model, and show that including this feature does not qualitatively change our results.
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At time 0, investor i decides her type k, knowing that at time 1 she will choose an optimal

portfolio based on the information set pertaining to the type k. The first optimization is a

combinatorial discrete choice problem (see, e.g., Hu and Shi, 2019; Arkolakis, Eckert, and Shi,

2021, for recent examples in economics). The second optimization is a standard Markowitz

(1952) portfolio choice problem, where γ is the risk aversion coefficient, W k = (qk)′Re is

investor’s final wealth at t = 2 (which depends on her type k), and c is the monetary cost

of paying attention to one earnings announcement—e.g., an information-processing cost, or

time and opportunity cost. The attention cost c is strictly positive and is the same across

investors and firms. (We derive additional predictions in a model with heterogeneous costs

across investors—e.g., retail versus institutional investors—in Section 3.)

At t = 1, investors build optimal portfolios:

qk =
1

γ
Vark1[D]−1(Ek1[D]−P), for k ∈P(A), (7)

where the superscripts k in Ek1[·] and Vark1[·] read “under the information set of a type k

investor.” That is, Vark1[D] is the N ×N covariance matrix of assets’ payoffs, conditioned on

the type k investor’s information set.

We assume that an unmodeled group of agents trades for non-informational reasons or

liquidity needs. This is a common assumption in noisy rational expectations models, which

ensures that equilibrium prices do not fully reveal investors’ information. Consistent with

much of the prior literature, we often interpret liquidity trading as noise (Grossman and

Stiglitz, 1980; He and Wang, 1995). Liquidity traders have inelastic demands of x shares,

where each element of x is normally and independently distributed, xn ∼ N (0, σ2
xn).

Denoting by λk the fraction of type k investors, the prices of risky assets are determined

in equilibrium by the market-clearing condition:∑
k∈P(A)

λkqk + x = M. (8)

Before turning to the equilibrium analysis, we define the fraction of investors who observe

the announcement Ea as

Λa ≡
∑

k∈P(A)

λkIka . (9)

Importantly, in our model the attention capacity of investors is not constrained, in the

sense that an equilibrium in which Λa = 1 ∀a ∈ A is possible, as we will describe below.
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2.1 Equilibrium search for information

As is customary in noisy rational expectations models, prices take the linear form

P = αE + ξx− ζM, (10)

where E ≡ [E1, E2, · · · , EA]′, α is a N × A matrix, and ξ and ζ are N ×N matrices.

Solving for the equilibrium price coefficients is not necessary to determine the equilibrium

demand for information. Instead, it is sufficient to make the following conjecture (equivalent

to Lemma 3.2 in Admati, 1985), which we will verify in Proposition 3.

Conjecture 1.

P̂ ≡ ξ−1(P + ζM) =
A∑
a=1

Λa

γσ2
εa

ιaEa + x, (11)

where P̂ ≡ [P̂1, P̂2, · · · , P̂N ]′ and ιa is a standard basis vector of dimension N with all com-

ponents equal to 0, except the a-th, which is 1.

This conjecture transforms the equilibrium prices into simple signals about Ea, a ∈ A.

In equilibrium, all investors except the fully informed (of type k = A) use prices to learn.

Accordingly, the information sets of investors at time 1 areFk = {Ea | a ∈ k} ∪ P̂ if k ∈P(A) \ A,

Fk = {Ea | a ∈ A} if k = A.
(12)

Before characterizing the information acquisition decision for each investor type, we define

the following learning coefficients :

`ka = Ika + (1− Ika )`a, where `a ≡
Λ2
a

Λ2
a + γ2σ2

xaσ
2
εa

. (13)

If a type k investor observes the earnings announcement Ea, then Ika = 1 and the learning

coefficient `ka reaches its maximum value, 1. Without observing Ea, I
k
a = 0 and the investor

relies on prices to learn, which yields `ka = `a < 1. Prices are informative about Ea to

the extent that someone pays attention to the signal Ea, that is, if Λa > 0. In this case,

`a increases with the fraction of informed investors (investors learn more from prices when

a higher fraction of them pay attention to Ea) and decreases with the amount of noise in

supply σxa and the amount of noise in the earnings announcement σεa (investors learn less

from prices when there is more noise in supply or when earnings announcements are noisier).
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Investors’ demand for information ultimately depends on the reduction in uncertainty

achieved by observing new information. Because in our setup the vector of final payoffs D is

a multidimensional normally distributed random variable, the reduction in uncertainty from

observing new information is conveniently measured using the notion of entropy: under the

information set of any investor type k ∈P(A), the vector D has entropy

Hk[D] =
N

2
ln(2π + 1)− 1

2
ln(det(Vark1[D]−1)). (14)

From this definition, it follows that the uncertainty perceived by the investor decreases with

the determinant of the posterior precision matrix of D (i.e., the inverse of the posterior

covariance matrix Vark[D], hereafter τ k).

Defining Var[D] ≡ U2bb′ + Var[e], where e is the vector of idiosyncratic components en

in firms’ payoffs given in (1), we can state the following proposition.

Proposition 1. The posterior precision matrix for each investor type k ∈P(A) is

τ k ≡ Vark1[D]−1 = Var[D]−1 +
A∑
a=1

`ka
σ2
εa

ιaι
′
a, (15)

and its determinant is given by

det(τ k) = det(Var[D]−1)

(
A∏
a=1

`kaσ
2
ea + σ2

εa

σ2
εa

)(
1 + U2

A∑
a=1

`kab
2
a

`kaσ
2
ea + σ2

εa

)
. (16)

Proposition 1 shows how the heterogeneity in the learning coefficients `ka across investors

of different types k ∈P(A) drives the heterogeneity in the determinants det(τ k). Because a

higher determinant means less uncertainty (Eq. 14), the determinants det(τ k) provide a clear

ranking of the informational distances between the 2A investor types. For instance the most

informed investors (of type A) have the highest det(τ k) because `Aa = 1, ∀a ∈ A, whereas

the least informed investors (of type ∅) have the lowest det(τ k).

The ranking in det(τ k) dictated by Proposition 1 allows for a simple characterization

of the information market equilibrium. Consider a type k investor who decides whether to

migrate to any alternative type in P(A) \ k. The key quantity that regulates the investor’s

decision is the benefit-cost ratio, which we define as

Bk
∅ ≡

det(τ k)

det(τ ∅)
e−2γc|k|. (17)

The ratio det(τ k)/ det(τ ∅) in Bk
∅ measures the gain in precision obtained from observing the
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earnings announcements made by all the firms in the set k, whereas e−2γc|k| measures the cost

of paying attention to these announcements. We can now formulate the following result.

Proposition 2. A type k investor changes type from k to k′ ∈P(A) \ k if and only if

Bk′

∅
Bk
∅
> 1 ⇐⇒ 1

2γ
ln

det(τ k
′
)

det(τ k)
> c(|k′| − |k|). (18)

Assume, without loss of generality, that |k′| − |k| > 0. On the left-hand side of (18),
1

2γ
ln det(τk

′
)

det(τk)
measures the benefit of migrating from k to k′ as a reduction in entropy divided

by investor’s risk aversion, (Hk[D] −Hk′ [D])/γ; the right-hand side measures the attention

cost. The type k investor changes type if and only if the benefit from the reduction in

entropy achieved by becoming of type k′ outweighs its cost. Risk aversion lowers the benefit

of information: because more risk-averse investors trade less aggressively, they benefit less

from paying attention to firm disclosures.

The ratio det(τ k
′
)/ det(τ k) in (18) is greatly simplified by means of Proposition 1: all

the heterogeneity pertaining to non-announcing firms enters only in det(Var[D]−1) and thus

vanishes in the ratio. To gain further insight into this ratio, let us focus on a simplified

version where investors in aggregate pay attention to one firm only (i.e., there is only one

announcing firm, a). In this case, a type ∅ investor changes type to {a} if and only if

1

2γ
ln

1 + Var[Da]
σ2
εa

1 + Var[Da]
σ2
εa

Λ2
a

Λ2
a+γ2σ2

xaσ
2
εa

> c. (19)

On the left-hand side the benefit of information increases with Var[Da]/σ
2
εa, which measures

the quality of information provided by the earnings announcement; decreases with the fraction

of informed investors Λa, in which case prices are more informative and the signal Ea becomes

less valuable; increases with the amount of noise in supply σxa, in which case prices are less

informative and the signal Ea becomes more valuable; and decreases with the risk aversion.

(See also Grossman and Stiglitz, 1980, for similar tradeoffs.)

The same tradeoffs are at play when multiple firms are announcing, with the significant

difference that heterogeneity in firms characteristics (ba, σεa, σea, and σxa) yields heteroge-

neous information choices across firms. We will analyze this heterogeneity in Section 2.4,

where we discuss the model’s theoretical predictions. We focus here on the information

market equilibrium, which we characterize in the following theorem.

Theorem 1. There exist two positive values cmin < cmax, strictly increasing in U , such that:

(A) If c ∈ [cmax,∞), then the cost of information is prohibitive and no investor finds it

optimal to pay attention to the earnings announcements: λ∅ = 1.
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(B) If c ∈ (cmin, cmax), then there exists a set {λk | k ∈ P(A)} such that, in equilibrium:∑
k∈P(A) λ

k = 1; λ∅ < 1; λA < 1; and the benefit-cost ratios {Bk
∅ | k ∈ P(A)} are

determined such that for any pair {k, k′} ∈P(A):

(i) If {λk > 0} ∧ {λk′ > 0}, then Bk′

∅ /B
k
∅ = 1.

(ii) If {λk = 0} ∧ {λk′ > 0}, then Bk′

∅ /B
k
∅ ≥ 1.

Conditions (i) and (ii) are both necessary and sufficient for the stability of the infor-

mation market equilibrium when c ∈ (cmin, cmax).

(C) If c ∈ [0, cmin], then the cost of information is small enough such that all investors pay

attention to all the earnings announcements: λA = 1.

Cases (A) and (C) are trivial equilibria in which the information cost is too high or too

low. In these cases, investors unanimously choose to remain uninformed or to pay attention

to all earnings announcements. Case (B), which will be the focus of our analysis in Section

2.4, defines a set of conditions such that, in equilibrium, no investor can unilaterally improve

their utility by changing their type. We explain in Section 2.3 how investors arrive at this

self-sustaining equilibrium, and describe an iterative algorithm that converges to equilibrium

from any initial conditions {λk0 > 0 | k ∈P(A)}.

2.2 Equilibrium prices and earnings response coefficients

We now aggregate investors’ demands in order to solve for equilibrium prices. Define first

the weighted average precision matrix for the population of informed investors as

τ ≡
∑

k∈P(A)

λkτ k. (20)

Lemma 1. The weighted average precision is given by

τ = Var[D]−1 +

[
diag[πa(Λa) | a ∈ A] 0A×(N−A)

0(N−A)×A 0(N−A)×(N−A)

]
, (21)

where each coefficient πa(Λa) is a strictly increasing function of Λa,

πa(Λa) =
Λ2
a + Λaγ

2σ2
xaσ

2
εa

Λ2
aσ

2
εa + γ2σ2

xaσ
4
εa

, a ∈ A, (22)

and diag[yj | j ∈ z] is a diagonal matrix with {yj | j ∈ z} on its diagonal.
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Each function πa(Λa) determines the aggregate precision gains from observing Ea. A

key property of these functions, which will prove useful shortly, is that they depend on the

economic uncertainty U only indirectly through Λa.

Proposition 3. The equilibrium prices in this economy satisfy

τP =
A∑
a=1

πa(Λa)ιaEa + γ

[
diag

[
πa(Λa)σ2

εa

Λa
| a ∈ A

]
0A×(N−A)

0(N−A)×A IN−A

]
x− γM, (23)

where Iz is the identity matrix of dimension z.

The earnings response coefficients (ERCs) measure the reactions of the equilibrium prices

to the earnings announcements. In a simpler model with a sole announcer the ERC is the

coefficient of Ea in the equilibrium price. In our model with N firms and A announcers,

ERCs form the principal diagonal of the N ×A matrix α in the price conjecture (10). That

is, ERCs measure the price reactions of the announcing firms to their own announcements.

Denoting by DA the final payoffs of all announcing firms, we derive the following corollary.

Corollary 3.1. The earnings response coefficients are given by the diagonal of the A × A

matrix αA, which solves:

αA = IA − (IA + Var[DA] diag[πa(Λa) | a ∈ A])−1 . (24)

The A × A matrix αA is zero if Λa = 0 ∀a ∈ A. An important separation result helps

us interpret αA: as shown in Lemma 1, the coefficients πa(Λa) do not directly depend on

U . Therefore, in the following analysis, we can separately assess the effects of an increase

in economic uncertainty on ERCs and, in particular, the additional effect that arises from

changes in investor attention.

2.3 Illustration

To illustrate how investors’ search for information converges to a stable equilibrium, it is

helpful to write the individual optimization problem (6) in a more straightforward form.

Appendix A.7 shows that at time 0, each investor makes the following choice:

max
k∈P(A)

lnBk
∅ , (25)

where the benefit-cost ratios Bk
∅ have been defined in (17).

A key property of the function f(k) = lnBk
∅ is submodularity—the difference in the

incremental value of f(k) that one element a makes when added to the type k decreases as
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the size of k increases. Submodularity can be interpreted as a property of diminishing returns.

It implies that an individual investor’s incentive to become more informed (e.g., to increase

her type from k to k ∪ {a}) decreases with her current level of attention. Furthermore, we

show in Appendix A.7 that a migration of a positive mass of investors from any type k to

a different type k′ decreases the relative attractiveness of type k′ with respect to type k,

i.e., decreases the fraction Bk′

∅ /B
k
∅ . This implies that an individual investor’s incentive to

choose k′ over k decreases if in aggregate more investors choose k′ over k. Hence we recover

the Grossman and Stiglitz (1980) result that individual action and the aggregate of (others)

individual actions are strategic substitutes.

Hu and Shi (2019) and Arkolakis et al. (2021) derive an evolutionary learning algorithm

that reaches the equilibrium of a submodular game from any initial point. Starting from a

set of initial values {λk0 > 0 | k ∈ P(A)} such that
∑

k λ
k
0 = 1, the algorithm allows some

small fraction of the population of investors of a given type k to revise their strategy as the

best response to the current total population strategy. This process is iterated over all types

until it converges to a self-sustaining equilibrium in which no investor changes strategy, as

in Theorem 1. We relegate the details of this algorithm to Appendix A.7 and focus here on

a numerical example, which we illustrate in Figure 1.

(Insert Figure 1 about here)

This numerical example considers an economy with three announcers. The announcing

firms differ through their exposure to systematic risk, b1 > b2 > b3, while other firm-level

parameters are homogeneous across firms. The parameters that we chose are provided in the

caption of the figure. Note that this example is only illustrative—in Section 4, we propose a

realistic calibration with a larger number of announcers.

The dashed and solid lines in the figure depict the values cmin and cmax, respectively.

The plot confirms the results of Theorem 1: (i) cmin < cmax and (ii) cmin and cmax increase

with the amount of uncertainty U . When c ≤ cmin, all investors are attentive to all earnings

announcements, λA = 1; when c ≥ cmax, no investor pays attention to earnings announce-

ments, λ∅ = 1; when c ∈ (cmin, cmax), the two dotted lines that split the middle zone show

that investors always find the announcement of firm 1 most valuable—they pay attention to

E1 in cases (B1), (B2), and (B3)—whereas the announcement of firm 3 least valuable—they

pay attention to E3 only in case (B3). Since b1 > b2 > b3, E1 is the most informative an-

nouncement about the systematic factor f , and investors turn their attention first to firm 1.

Thus, in this equilibrium investors behave as if they queue announcements based on their

exposure to systematic risk. Frederickson and Zolotoy (2016) document a similar queuing re-

sult: investors devote more immediate attention to announcing firms that are comparatively
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more visible (i.e., larger firms, firms with more media coverage, higher advertising expense,

or higher analyst coverage). In the case discussed here, attention queueing is based on firms’

exposures to the systematic factor f . Indeed, as we show in the next section, firms’ exposures

to the systematic factor yield a clear ranking of investor attention across firms.

2.4 Implications for attention and earnings response coefficients

Building on the previous illustration, we derive several testable implications of the model.

The first result that emerges from Theorem 1 and Figure 1 is the effect of an increase in

uncertainty on the information market equilibrium. Suppose uncertainty is low enough that

all investors are inattentive—this corresponds to case (A), depicted with the hashed area in

the plot. Then, after an increase in uncertainty the equilibrium moves to the right, anywhere

from case (B) to case (C): a positive fraction of investors become attentive first to E1, and

if the increase in uncertainty is sufficiently substantial, to E2 and ultimately to E3. The

main implication is that an increase in uncertainty triggers investor attention to firm-level

information. Moreover, investors direct their attention to an increasing number of firms as

uncertainty increases.

The previous implication refers to the number of firms : more announcing firms become the

focus of investor attention as uncertainty increases. We now turn to the effect of uncertainty

on the number of investors who pay attention to the earnings announcements. The fractions

Λa of investors who observe each earnings announcement, defined in (9), are not apparent

from Figure 1, which only shows when these fractions are positive or zero. To analyze how

these fractions vary with uncertainty, assume for simplicity that no investor in the economy

observes the announcement of firm a, or Λa = 0. Note that similar intuition holds without

the assumption but with a more complicated expression. Then, for a type k investor the

benefit of paying attention to Ea follows from (17):

det(τ k∪{a})

det(τ k)
= 1 +

1

σ2
εa

σ2
ea +

b2
a

1
U2 +

∑A
α=1, α6=a

b2α`
k
α

`kασ
2
ej+σ

2
εα

 . (26)

The first implication of (26) is that the benefit of paying attention to Ea strictly increases

with uncertainty (this holds for all investor types and all announcing firms). Moreover,

the benefit of attention is higher for firms with a stronger exposure ba to the systematic

component, a higher volatility σea of their idiosyncratic component, and less noise σεa in

their announcement. Eq. (26) also implies that the benefit of attention decreases with the

amount of attention that investors pay to other earnings announcements, as reflected in the

summation term: if a large number of firms announce at the same time (i.e., A is high), and
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large fractions of investors are attentive (i.e., Λα is large, ∀α 6= a), then prices are highly

informative about f and paying attention to Ea becomes less valuable. This implication

is similar to the investor distraction hypothesis (Hirshleifer et al., 2009): when multiple

announcements compete for investor attention, prices underreact to the new information.

In our model, this result arises not because investors are distracted by the simultaneous

announcements but because information spillovers increase aggregate price informativeness,

diminishing the benefit of attention.

A critical implication of (26) emerges once we fix ba = 0, which results in a constant

benefit of paying attention to Ea. In this case, an increase in uncertainty does not lead

to an increase in attention to firm-level information because no information spillover occurs

from firm a to the rest of the economy. This implication, coupled with evidence from recent

empirical work (Hirshleifer and Sheng, 2022; Ben-Rephael et al., 2021; Chan and Marsh,

2021b) and our empirical analysis in Section 4, highlights the importance of information

spillovers in theories of firm-level information acquisition.

Panel (a) of Figure 2 illustrates the impact of an increase in uncertainty in our calibrated

economy with three announcers. The three lines depict the fractions of the population of

investors attentive to each earnings announcement. This example assumes that b1 > b2 > b3.

Confirming Eq. (26), the fractions Λ1, Λ2, and Λ3 increase with U . We note that for low

levels of economic uncertainty the fractions Λa are all zero for a ∈ {1, 2, 3}, which corresponds

to case (A) of Theorem 1. As uncertainty increases the economy moves successively to all

the subcases of (B) and ultimately to case (C).

(Insert Figure 2 about here)

The increase in investor attention caused by an increase in uncertainty has additional

implications for the response of prices to firm-level information. To gain more intuition, we

write the ERC in an economy with a sole announcer (a particular case of Corollary 3.1):

ERCa = 1− 1

1 + (U2b2
a + σ2

ea)πa(Λa)
. (27)

The ERC increases with uncertainty directly through an increase in the variance of the

firm’s payoff Var[Da] = U2b2
a+σ2

ea and indirectly through an increase in investors’ attention to

the earnings announcement. Firms with a stronger exposure, ba, to the systematic component,

or a higher volatility, σea, of their idiosyncratic component, observe a larger increase in their

ERC as uncertainty and investor attention increase. Panel (b) of Figure 2 revisits our economy

with three announcers. It confirms that ERCs increase with uncertainty and that firms with

stronger exposure to the systematic components have higher ERCs.
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Eq. (27) implies that ERCs are driven both by the exogenous increase in uncertainty and

the endogenous increase in investor attention and that the two effects compound each other.

We disentangle these two effects in Figure 3. The gray bars depict the impact on ERCs of

an increase in U. The hashed bars include the additional impact of the increase in investor

attention, confirming the direct and indirect effects from (27). Note that in this example the

ERC of the third announcer increases from zero to a positive value only through the indirect

effect of an increase in attention.

(Insert Figure 3 about here)

We now turn to other dimensions of heterogeneity across firms and summarize the results

in Figure 4. Panels (a) and (d) analyze the effect of the volatility of the idiosyncratic compo-

nent, σe1 > σe2 > σe3 (while all other parameters are constant across firms). Eqs. (26) and

(27) imply that firms with higher σea should observe stronger investor attention and ERCs to

their announcements because the informativeness of an earnings announcement, Var[Da]/σ
2
εa,

is higher for firms with higher σea. Thus, investors focus on those firms first after an increase

in uncertainty. Panels (a) and (d) confirm these effects for the fractions of informed investors

and ERCs.

(Insert Figure 4 about here)

Assuming that firms differ through the noise in their signals, σε1 < σε2 < σε3, implies that

the signal of firm 1 is more valuable for investors for the same reason as above: E1 is more

informative about f than E2, which itself is more informative than E3. Panels (b) and (e)

of Figure 4 illustrate this. Finally, we also analyze the case of different noisiness of supply.

Panels (c) and (f) consider an economy in which σx1 > σx2 > σx3 and show that after an

increase in U , investors turn their attention more to firm 1, causing an increase in ERCs.

The intuition stems from price informativeness: the equilibrium prices of firms with more

substantial noise in supply reveal less information to investors, which increases the ex-ante

incentive to acquire information from earnings (as in Grossman and Stiglitz, 1980). This

intuition explains the greater attention and stronger ERCs for firms with higher σxa.

To summarize, the testable implications of our model concerning the impact of uncertainty

on investor attention and on ERCs are: (i) when uncertainty increases, investors focus on

earnings announcements of a larger number of firms, and more investors pay attention to

each announcing firm; (ii) investors’ incentives to pay attention to earnings announcements

decrease with the number of firms that announce their earnings simultaneously; (iii) when

uncertainty (investor attention) increases, ERCs strengthen for all announcing firms; and

(iv) increases in ERCs caused by higher uncertainty (investor attention) are incrementally

stronger for firms with higher ba, higher σea, lower σεa, and higher σxa.
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2.5 Implications for firms’ betas and the securities market line

In this section, we explore the impact of investor attention on the CAPM. Our goal is to show

how cross-sectional differences in attention levels among announcing firms affect individual

firm betas, and how the aggregate attention of investors drives the resolution of uncertainty

over time. Greater aggregate attention leads to a higher market risk premium, which, in the

context of the CAPM, means a steeper securities market line (SML).

The derivation of a model-implied CAPM on earnings announcement days requires en-

dogenous prices at time 0. Thus, maintaining the same model assumptions as in the previous

analysis, we assume that at time 0 agents trade in the market and observe additional infor-

mation. (The type of this information—public or private—is inconsequential for the results

derived here.) As such, time 0 and time 1 represent the close of two consecutive trading days,

with earnings being announced on the second day. Denoting equilibrium prices at times 0

and 1 by P0 and P1, asset returns on the announcement day are Re
1 ≡ P1 −P0.

At time 0, all agents observe a publicly available signal about the aggregate market payoff,

G = M′D + g, where g ∼ N (0, σ2
g), (28)

where the noise in the public signal g is independent of all the random variables previously

defined. In an economy with a large number of firms (i.e., when N →∞), one can interpret

G as a signal about the systematic component f .

As in the baseline model, noise traders at time 0 have inelastic demands of x0 shares, with

x0,n ∼ N (0, σ2
xn), and we denote noise trading at time 1 by x1, which is defined as before.

Thus, the total supply of assets available for trading to informed investors is M−x0 at time

0 and M−x0−x1 at time 1. This follows He and Wang (1995) and Brennan and Cao (1997).

To summarize, in this slightly modified setup, investors trade before and after earnings

announcements, making their information acquisition decision at any time between 0 and

1. The following proposition describes investor asset demands and risky asset prices at each

market session in this model.

Proposition 4. There exists a partially revealing rational expectations equilibrium in the two

trading session economy in which

(i) Individual asset demands for a type-k investor are given by:

q0 =
1

γ
τ 0(E0[D]−P0) and (29)

qk1 =
1

γ
τ k1(Ek1[D]−P1), (30)
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where τ 0 ≡ Var[D|F0]−1 and τ k1 ≡ Var[D|Fk1 ], F0 = {G}, and Fk1 = {G} ∪ Fk, with

Fk defined in (12).

(ii) The vectors of risky asset prices are given by

P0 =
1

σ2
g

τ−1
0 MG− γτ−1

0 (M− x0) and (31)

P1 = τ−1
1

∑
k∈P(A)

λkτ k1 E
k
1[D]− γτ−1

1 (M− x0 − x1), (32)

where τ 1 ≡
∑

k∈P(A) λ
kτ k1.

The proof is provided in Appendix A.8 and follows He and Wang (1995) and Brennan

and Cao (1997), adapted to our Grossman and Stiglitz (1980) setup. Proposition 4 leads to

a CAPM relation, which we describe in the following corollary.

Corollary 4.1. (CAPM) Define the market excess return as Re
M = M′Re. The following

CAPM relation holds on an earnings announcement day:

E[Re] = β E[Re
M], with β =

(τ−1
0 − τ−1

1 )M

U2
0 −M′τ−1

1 M
, (33)

where the market risk premium is given by

E[Re
M] = γU2

0 − γM′τ−1
1 M, (34)

and U2
0 ≡ M′τ−1

0 M represents the market-wide uncertainty (variance) that investors face

before making information decisions and before the earnings announcements.

To understand how attention affects the CAPM, it is helpful to explain the equilibrium

in this economy, as stated in Proposition 4 and Corollary 4.1. Expected returns from time 0

to time 2 are determined by the uncertainty that investors face at time 0, τ−1
0 = Var[D|F0].

Eq. (29) and market clearing at time 0 leads to E0[D] − P0 = γτ−1
0 (M − x0). Taking

the unconditional expectation of this relation and multiplying it with the market portfolio

weights M′ yields the total risk premium from time 0 to time 2, E[D−P0] = γU2
0 . Thus, the

total risk premium from time 0 to time 2 is fully determined by the aggregate uncertainty

that investors face at time 0. This uncertainty increases with U and σg, as can be intuitively

understood by considering an economy with a large number of firms:

lim
N→∞

U2
0 =

U2σ2
g

U2 + σ2
g

. (35)
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Investors’ attention at time 1 determines how the total risk premium from time 0 to time

2 is allocated between these two periods. As attention influences the temporal resolution of

uncertainty, it impacts the pattern of expected returns over time. Accordingly, Eq. (34),

which describes the market risk premium during the earnings announcement day (time 0 to

time 1), comprises two terms. The first term is the total risk premium from time 0 to time

2, γU2
0 . Our focus lies on the second term, governed by investors’ attention.

Without attention (if Λa = 0 ∀a ∈ A), τ 1 = τ 0 and the market risk premium is zero,

meaning that buying the market portfolio at time 0 and selling it at time 1 entails no risk.

An analogy that illustrates this finding is the ship metaphor proposed by Robichek and

Myers (1966).5 However, when investors are attentive, M′τ−1
1 M decreases with investor

attention (∂M′τ−1
1 M/∂Λa < 0 ∀a ∈ A; see Appendix A.8) and yields a positive risk premium.

Investors earn a risk premium by paying attention because they are rewarded for resolving

uncertainty (Epstein and Turnbull, 1980). Eqs. (33)-(34) thus imply that heightened investor

attention leads to a higher market risk premium.

In the CAPM framework, a higher market risk premium results in a steeper SML. This

steepening effect of investor attention on the SML is independent of the initial level of uncer-

tainty that prevails at time 0, U2
0 . While an increase in the market risk premium due to higher

U2
0 is an expected equilibrium outcome—as evident in (34)—the higher risk premium due to

greater investor attention, along with the corresponding SML steepening, represents a novel

result. In this simple two-period model, attention raises the risk premium on announcement

days through the temporal resolution of uncertainty.

Corollary 4.1 yields additional predictions about the market betas of announcing firms.

These predictions emerge most transparently in a large economy in which, as N →∞, firms’

market betas converge to:

lim
N→∞

β = b + h



π1(Λ1)σ2
e1

1+π1(Λ1)σ2
e1
b1

π2(Λ2)σ2
e2

1+π2(Λ2)σ2
e2
b2

...
πA(ΛA)σ2

eA

1+πA(ΛA)σ2
eA
bA

0N−A


, (36)

5In the metaphor, a ship begins a two-year journey, and the value of financial claims on the ship’s cargo
upon arrival is based on all available information at departure. If no new information is expected to permeate
the market during the voyage, then buying these financial claims at departure and selling them after one year
carries no risk. However, if new information is expected to emerge during the first year, selling these claims
after the information becomes public entails risk, implying that the expected return for the first year exceeds
the risk-free rate. In short, the timing of uncertainty resolution affects the pattern of expected returns over
time. Epstein and Turnbull (1980) further formalize this concept in a general equilibrium framework. See
also Kalay and Loewenstein (1985), fn. 3.

18



where h > 0 and the scalars πa(Λa), a ∈ A are defined in Lemma 1 and are increasing in Λa.

(The predictions do not hinge on taking the large economy limit, but the intuition is easier

to convey in a large economy; see Appendix A.8.)

Eq. (36) has two predictions. First, betas are stronger for announcing firms. Consider two

firms, one announcer and one non-announcer, with the same exposure to the systematic factor

ba = bn > 0. The last term in (36) shows that the beta of the announcing firm increases on its

announcement date (Patton and Verardo, 2012; Chan and Marsh, 2021b). Second, and more

specific to our information acquisition setting, investor attention modulates the magnitude of

the increase in the announcing firm’s beta. Without attention, πa(0) = 0, and the betas of the

two firms remain the same. On the other hand, when attention is positive, the announcing

firm’s beta increases with the fraction of investors attentive to its announcement.

These predictions indicate that firms announcing earnings have higher expected returns

than non-announcing firms. According to the CAPM relation in Corollary 4.1, this difference

is attributed exclusively to the increased betas of the announcing firms. The rise in expected

returns echoes the well-documented earnings announcement premium (Beaver, 1968; Chari,

Jagannathan, and Ofer, 1988; Ball and Kothari, 1991; Cohen, Dey, Lys, and Sunder, 2007;

Frazzini and Lamont, 2007). However, our model attributes this phenomenon to an increase

in systematic risk. A measured earnings announcement premium in abnormal (beta-adjusted)

returns requires additional components, such as errors in empirical beta estimates (discussed

in Andrei, Cujean, and Wilson, 2023) or an augmented factor structure (illustrated by Savor

and Wilson, 2016).

3 Additional implications and extensions

3.1 Heterogeneous attention costs

Our analysis so far has focused on an economy in which firms are heterogeneous, but investors

are ex-ante identical. In reality, different investors may have different information acquisition

costs. For instance, institutional owners presumably have lower information acquisition costs

than retail investors. When choosing whether to pay attention to firm-level information, an

institutional investor’s alternative is generally to pay attention to a different financial signal

or other job-related tasks (e.g., human resources, calling investors). In addition, institutional

investors subscribe to services that lower the direct costs of information acquisition. In

contrast, retail investors pay attention to a primary job, family matter, hobby, or the back

of their eyelids, which may carry higher personal opportunity costs.

To study the implications of heterogeneous information costs, we extend our model to
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two groups of investors, with information costs cl < ch. (These low-cost (cl) and high-cost

(ch) investors can be thought of in different ways, such as institutions vs. individuals, local

vs. non-local investors, or industry-focused vs. generalist investors.) The additional layer of

heterogeneity requires re-writing the equilibrium conditions of Theorem 1 separately for each

investor group. Importantly, cl < ch implies that

B
k∪{a}
l,k > B

k∪{a}
h,k , ∀k ∈P(A) and a /∈ k, (37)

where B
k∪{a}
j,k = exp(−2γcj|k|) det(τ k∪{a})/ det(τ k) for j ∈ {l, h}. In words, paying attention

to one extra announcement has a larger net benefit for a low-cost investor than for a high-cost

investor. Condition (37), labeled “monotonicity in types” by Hu and Shi (2019), guarantees

the existence of an equilibrium and ensures that the solution method described in Appendix

A.7 reaches the equilibrium.

Figure 5 plots the attention of low-cost (left) and high-cost (right) investors as functions of

uncertainty. We use the same calibration with b1 > b2 > b3 as in Figure 1, split the population

of investors into 50% low-cost and 50% high-cost (other splits lead to similar results), and

fix cl = 0.045 and ch = 0.055. The two panels show that for any level of uncertainty, larger

fractions of low-cost investors pay attention to the earnings announcements. The steeper lines

in the left-side plot suggest that low-cost investors respond faster to the increase in uncertainty

than high-cost investors, confirming the intuition from (37) that low-cost investors benefit

comparatively more from increasing their attention.

(Insert Figure 5 about here)

Assuming different attention costs has further implications for ERCs. As shown in (27),

ERCs increase with the amount of attention in the economy, which implies that the investor

base of firms has an impact on ERCs: ERCs for firms with high ownership by low-cost

investors should show a more robust response to an increase in uncertainty, through the

stronger increase in attention. We test this theoretical implication in Section 4.

3.2 Dynamic model

Our main setup assumed a static information acquisition choice. However, in Appendix A.9,

we consider a dynamic setup in which economic uncertainty varies over time. We examine

how investors optimally acquire information in response to changes in uncertainty, investigate

how this affects ERCs, and confirm that the comparative statics results from the one-period

economy hold in this dynamic setup. We relegate the details of this extension to the appendix

and discuss here its main implications.

20



In the dynamic version of the model, equilibrium prices depend on the weighted average

of beliefs of informed and uninformed investors, consistent with previous work by Hirshleifer

and Teoh (2003). When uncertainty increases, more investors pay attention, leading to a

stronger impact of attention on prices and thus further strengthening the ERCs. Thus, we

recover the intuition from the static model that ERCs increases with investor attention.

Furthermore, this effect is more pronounced for firms with higher exposure to the systematic

component or higher idiosyncratic volatility.

The dynamic model not only confirms the intuition from the one-period economy but also

provides insight into the possibility that investors may increase their information acquisition

before earnings announcements. In particular, the appendix demonstrates that, regardless

of prior information acquisition decisions, heightened uncertainty at time t always increases

the benefit of paying attention to the earnings announcement, leading to stronger ERCs.

Thus, although investors’ information search beforehand may partially offset the impact of

increased uncertainty on ERCs, stronger attention still results in higher ERCs.6

4 Empirical analyses

In this section, we conduct empirical tests of our theoretical predictions regarding the effect

of aggregate uncertainty on investors’ information acquisition, on ERCs, and on the CAPM.

In our first set of tests, we examine the relation between uncertainty and investor attention

around the announcement of quarterly earnings. That is, the unit of measurement in our

analyses is the quarterly earnings announcement.

4.1 Variable definitions and summary statistics

We use the VIX, an option-based measure of expected S&P 500 volatility, to measure time-

varying market-wide uncertainty. The VIX proxies for forward-looking stock market uncer-

tainty, risk, or volatility, and its direct counterpart in our model is U (see Appendix A.8).

To mitigate the potential for reverse causality, we use the closing VIX from the trading day

prior to the earnings announcement.

We use the SEC’s EDGAR download logs to capture investor information search. EDGAR

is a public repository for company SEC filings. The SEC publicly discloses EDGAR search

activity records (a “search” refers to accessing a specific filing). We employ the natural

6As stated in Benamar, Foucault, and Vega (2021), stronger investor attention in response to greater
uncertainty does not fully neutralize the effect of uncertainty. This means that an increase in uncertainty
at time t − 1 results in a higher uncertainty at t, despite investors paying closer attention at t − 1. Their
conclusion is based on the idea that the cost of acquiring information increases with attention. As a result,
the stronger attention at time t− 1 has only a partial offset on uncertainty at time t.
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logarithm of two metrics: (1) the total volume of completed EDGAR searches per company-

day (ESV ) as a search-driven proxy for investor attention and (2) the number of downloads

of a company’s filings from unique IP addresses (ESVU ) to measure the extensive margin

of search, i.e., the number of investors accessing the firm’s filings. EDGAR search records

span February 14, 2003, to June 30, 2017.7 Note that a change in ESV(U) is equivalent

to a change in log Λa in our model.8 As a secondary measure of investor search, we use

the Investor Search Volume Index (ISVI ), which is calculated based on investor searches for

stock tickers via Google (generously provided by deHaan et al., 2021). We view ISVI as a

secondary measure as it is available only from 2010 to 2018 and for a smaller sample of firms,

and is a 0− 100 index rather than a more easily interpretable raw count of searches.

As in prior studies (e.g., Livnat and Mendenhall, 2006; Hirshleifer et al., 2009; DellaVigna

and Pollet, 2009; Even-Tov, 2017), we use standardized earnings surprise (SUE ) deciles based

on calendar-quarter sorts in our analyses of market reactions to earnings announcements. We

measure earnings surprises as SUEi,t = (Xi,t − E[Xi,t])/Pi,t, where i denotes firm, t denotes

quarter, Xi,t are IBES reported actual earnings, E[Xi,t] are expected earnings, taken as the

latest median forecast from the IBES summary file (following Dai, 2020), and Pi,t is the share

price at the end of quarter t. We calculate earnings announcement returns, EARET, as the

two-day size-adjusted returns, from the day of the earnings announcement through the day

after.9

In our analyses of market reactions to earnings announcements, we use the following

variables as controls, following prior literature (e.g., Hirshleifer et al., 2009): compound ex-

cess returns from ten to one days before the earnings announcement, PreRet; the market

value of equity on the day of the earnings announcement, Size; the ratio of book value

of equity to the market value of equity at the end of the quarter for which earnings are

announced, Book-to-Market ; earnings persistence based on estimated quarter-to-quarter au-

tocorrelation in reported earnings, EPersistence; institutional ownership as a fraction of total

shares outstanding at the end of the quarter for which the earnings are announced, IO; earn-

ings volatility, EVOL; the reporting lag measured as the number of days from quarter end

7Completed EDGAR searches refer to successful delivery of the requested document (code=200), which is
not an index page (idx=0). EDGAR downloads can originate from humans or automated programs, as noted
in prior research (e.g., Ryans, 2017). We use all downloads for three reasons: (1) automated downloads may
serve information providers catering to investors; (2) automated downloads may be programmed to access
EDGAR files conditional on other inputs to the program capturing, for instance, macroeconomic conditions;
and (3) our use of year fixed effects in regressions controls for a secular trend of increasing robot downloads
over time.

8In the model, Λa can be approximated with Qa/Q, where Q is a large number that measures the total
population of investors andQa measures the number of investors who observe Ea. Hence, ∆ log Λa = ∆ logQa,
and thus a change in log Λa is equivalent to a change in ESV(U).

9Our main results on earnings announcement window returns are robust to defining excess daily returns
as firm-specific returns adjusted for either equal-weighted or value-weighted market returns.
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to the earnings announcement, ERepLag; analyst following defined as the number of ana-

lysts making quarterly earnings forecasts according to the IBES summary file, #Estimates;

average monthly share turnover over the preceding 12 months, TURN; an indicator variable

for negative earnings, Loss; the number of other firms announcing earnings on the same day,

#Announcements; year indicators; and day-of-week indicators.10

Our subsample analyses use partitions based on proxies for the underlying constructs.

Although the exposures of firms’ payoffs to the systematic factor f (the parameters bn)

are not perfectly observed in the data, they can be proxied by firms’ CAPM betas. More

precisely, in our model firms with larger exposures to f necessarily have higher market betas

(we provide this link in Eq. (36)). We use forecast dispersion (DISP) and idiosyncratic

volatility (IDVOL) as proxies for total earnings variance (Var[Ea] in our model) and firm-

specific payoff variance (σ2
ea).

11 The variance of noise trade (σ2
xa) is reflected in share turnover

(TURN ), though we caution that turnover also captures other constructs, such as information

asymmetry and disagreement. Finally, we split the sample on institutional ownership (IO)

to capture variation in the cost to investors of acquiring information (c), as these costs are

likely to be lower for institutional than retail owners. We provide detailed variable definitions

in Appendix B.

Our sample begins in 1995, as earnings announcement dates tended to be identified unre-

liably prior to 1995 (DellaVigna and Pollet, 2009; Hirshleifer et al., 2009). We further limit

our sample to firms for which we can calculate analyst forecast-based earnings surprises,

firms with a stock price greater than $5, and firms with average monthly share turnover in

the past year no lower than 1. The latter restrictions drop the smallest and least actively

traded firms from the sample. Finally, we restrict the sample to observations for which data

for all variables used in the respective analyses are available. This results in a sample of

224,675 firm-quarter observations for the analyses that do not require data on investor atten-

tion measures and 119,341 (62,757) for the analyses that require data availability on EDGAR

(Google) searches. Table 1 provides the descriptive statistics for the variables used in our

analyses.12

(Insert Table 1 about here)

Table 2 provides correlations. Bold correlations are significant at the one percent level.

10To mitigate the influence of outliers among skewed/fat-tailed controls, we winsorize Size, EPersistence,
and EVOL at the first and 99th percentiles.

11Note that Forecast Dispersion could be driven by variation and unpredictability in either earnings
fundamentals (Var[Da] = b2aσ

2
f + σ2

ea) or earnings noise (σεa). As can be seen in a comparison of panels (d)

and (e) of Figure 4, σ2
ea and σ2

εa have opposing effects on the relation between uncertainty and ERCs.
12The number of observations for some variables in Table 1 is greater than 224,675, in part because we

require some lagged variables to be non-missing in the regression tests but not in Table 1.
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VIX is negatively correlated with EDGAR search volume measures and ISVI, but these

raw correlations do not account for other factors, such as time factors affecting both VIX

and search volume (e.g., higher VIX and lower search in some years). VIX is generally not

significantly related to earnings announcement returns or surprises, suggesting that prior-day

economic uncertainty is not directly linked to firm-level earnings surprises.

(Insert Table 2 about here)

4.2 Attention and earnings response coefficients

As we elaborate on in Section 2, our first hypotheses relate to the effects of economic un-

certainty on investor attention to firm-level information, which we test for using investor

searches and market reactions around earnings announcements.

Our first set of tests examines whether aggregate uncertainty affects firm-level search

activity in and of itself. For these tests, we exploit the SEC EDGAR records of access

to company-specific filings around quarterly earnings announcements as well as investors’

Google searches captured by ISVI. We estimate the following regression equation:

SEARCHit = c0 + c1 × VIXt + c2 × ESVit−1

+c3 × SUEit + c4 × abs (SUEit) + γ ·Xit + uit, (38)

where SEARCH is either the log of daily EDGAR search volume (ESV ), the log of daily

EDGAR search volume from unique IP addresses (ESVU ), or ISVI. We also include the

lagged dependent variable (ESV, ESVU, or ISVI on the previous earnings announcement),

the standardized SUE decile, and the absolute value of the standardized SUE decile to control

for differences in average search volume across firms and in response to earnings news. Table

3 presents the results from the estimation of (38). In Table 3 and the remaining tests, we

standardize all variables to a mean of zero and unit variance for ease of interpretation.

The results in Table 3 provide strong evidence for more active searching for firm-level

information on days with higher VIX, as the coefficients of interest on VIX are positive and

statistically significant for all three dependent variables. The coefficients of interest can be

interpreted as the approximate percent change in search volume or unique searchers for a

standard deviation change in the VIX. A one standard deviation change in VIX is associ-

ated with a 3.0 (3.4) percent increase in the number of EDGAR searches (from unique IP

addresses) for the announcer’s filings on the earnings announcement date and a 1.8 percent

increase in ISVI relative to its standard deviation (recall that ISVI is an index rather than
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a logged count variable such as ESV(U)).13 Lagged dependent variables are significantly as-

sociated with announcement day searches, as are the signed and absolute earnings surprise

deciles (except for absolute SUE in the ESV specification). Coefficients on #Announcements

are negative, though only statistically significant in the ESV and ISVI specifications, sup-

porting the multiple-announcements effect shown in Hirshleifer et al. (2009). However, they

also support our interpretation of Eq. (26): due to information spillovers, a higher number of

announcements increases aggregate price informativeness, diminishing the benefit of atten-

tion. In the remainder, we focus on EDGAR search volume measures (ESV and ESVU ), as

these are available for a more extended period covering roughly twice the number of earnings

announcements as ISVI.

(Insert Table 3 about here)

Our next set of tests exploits the model’s predictions regarding price reactions to firm-

level information. We examine how economic uncertainty interacts with firm-level news in

the price formation process. We focus on the association between size decile-adjusted stock

returns in the two-day earnings announcement window and the earnings surprise, the VIX,

the interaction between the VIX and the earnings surprise, and a set of controls. We interact

each of these controls with our earnings surprise variable to mitigate concerns that a correlated

omitted interaction drives the coefficient on our interaction of interest. Standard errors are

clustered at the earnings announcement date level.

To test the hypotheses developed in Section 2, we estimate the following regressions at

the firm-quarter level:

EARETit = c0 + c1 × SUEit + c2 × VIXt + c3 × SUEit ∗ VIXt + γ ·Xit + uit, and

EARETit = c0 + c1 × SUEit + c2 × ESVUt + c3 × SUEit ∗ ESVUt + γ ·Xit + uit, (39)

where the dependent variable EARETit represents the announcement-window return and Xit

represents a set of controls.

Column (1) of Table 4 reports our estimates of the first equation in (39). The coefficient on

SUE decile is positive and significantly different from zero (0.204, p < 0.01), consistent with

positive market responses to earnings surprises. Our coefficient of interest, the interaction

between VIX and SUE, is also positive and significantly different from zero (0.015, p < 0.01).

13In unreported analysis replacing VIX with VIX centile indicators in the specifications presented in
Table 3 (i.e., SEARCHit = c0 +

∑100
j=1 c1j×VIX Centiletj + · · · ), we find that the relation between VIX and

attention measures is convex, consistent with the convexity in Figure 2(a) when attention to announcements
begins increasing from around U ∈ [0.19, 0.32]. We focus on the linear empirical effect identified by estimating
Eq. (38) for ease of interpretation.
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We infer from this that market responses to firm-level information are higher on days with

greater uncertainty. Specifically, a one standard deviation change in VIX yields an ERC

that is approximately seven percent higher than the average response to earnings surprises

(7% = 0.015/0.204).

(Insert Table 4 about here)

Columns (2) and (3) of Table 4 explore the mediating role of attention. In column (2), we

replace VIX with ESVU. The sample shrinks considerably because EDGAR search data is

available for a shorter window (2003-2017 relative to the 1995-2020 earnings announcement

sample). Even with the smaller sample, the coefficient on ESVU *SUE is positive and signif-

icant (0.028, p < 0.01), consistent with earnings announcements that attract greater investor

attention receiving stronger market reactions in the announcement window. In column (3),

we include both VIX and ESVU as well as their interactions with SUE. The coefficients of

interest are both positive, although the ESVU *SUE interaction (0.027, p < 0.01) is signif-

icant while the VIX *SUE interaction (0.010, p > 0.10) becomes insignificant at traditional

cutoffs. Overall, the coefficient pattern is consistent with the indirect effect of VIX on mar-

ket responses, operating through investor attention allocation as reflected in EDGAR search

activity, in line with the prediction of our model illustrated in Eq. (27) and Figure 3.14

Our use of SUE deciles may raise a concern, as the dispersion of earnings surprises across

SUE deciles could be larger during periods of high VIX. Empirically, we observe that the

dispersion in the lowest SUE decile is higher on high VIX days. To ensure that this dispersion

is not driving the higher ERCs, we conduct two additional analyses. First, we re-run the

analyses in Table 4 using raw SUE s instead of SUE deciles. Second, we re-run the same

analyses using a subsample that excludes the lowest SUE decile. Both tests (tabulated in

IA.1 and IA.2, respectively, in the Internet Appendix) yield similar results for the ESVU and

SUE interaction, while the VIX and SUE interaction becomes statistically weaker.

Next, we test additional theoretical predictions from our model using cross-sectional anal-

ysis. Our model demonstrates that the effect of economic uncertainty on ERCs is monotonic

in CAPM beta (ba), earnings variance (Var[Ea]), idiosyncratic volatility (σea), noise trading

(σxa), and investor attention costs (c). Accordingly, we predict that our findings will be

stronger among firms with high beta, high earnings variance, high idiosyncratic volatility,

14Our results are consistent with Drake et al. (2015), who also find a positive association between EDGAR
search volume and ERCs. Additionally, they present evidence that EDGAR search volume around the
earnings announcement is associated with less post-earnings announcement drift (PEAD). While we do not
find a similar effect on average, we find in untabulated analysis a moderate negative association between
EDGAR search volume and near-term PEAD for firms with above-median CAPM beta. This is consistent
with our theoretical prediction of stronger effects for firms with greater systematic risk and in line with the
higher ERC for high-beta firms documented in our Table 6.
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high noise trading, and low processing costs, captured empirically by CAPM beta, forecast

dispersion (DISP), idiosyncratic volatility (IDVOL), trailing share turnover (TURN ), and in-

stitutional ownership (IO), respectively. Table 5 presents estimates from these cross-sectional

splits, where the variable of interest is the VIX *SUE interaction.

In the CAPM beta split subsamples, the coefficient of interest has a positive sign but is

not statistically significant for low-beta firms. In contrast, the coefficient for high-beta firms

is positive and significantly different from both zero (0.022, p < 0.01) and the corresponding

low-beta coefficient (p < 0.10). This is consistent with our result in Figure 2, panel (b),

that the effect of economic uncertainty on ERCs is greater for firms with larger exposures to

systematic risk. In the subsamples split on forecast dispersion and idiosyncratic volatility, the

coefficients of interest are both positive and significantly different from zero in above-median

subsamples (0.017 and 0.014, p < 0.05). However, they are not significantly different from

those in the corresponding below-median subsamples.

(Insert Table 5 about here)

For the splits using share turnover to capture the expected magnitude of noise trade, σxa,

the effects of economic uncertainty on ERCs are concentrated in subsamples with above-

median TURN. The coefficient on VIX *SUE in the high-TURN sample is positive and

significantly different from both zero (0.022, p < 0.01) and the coefficient in the low-TURN

sample (0.04, p < 0.10 for the test of difference in coefficients). This plausibly captures the

predicted positive effect shown in Figure 4, panel (f), where the effect of economic uncertainty

on ERCs is greater when the volatility of noise trade is larger. Similar to noise trade in our

model, high turnover can make it difficult to infer fundamental information from price, making

attention to earnings incrementally more valuable during periods of high uncertainty.

Our last sample splits are based on institutional ownership (IO). It is plausible to assume

that retail investors face greater opportunity costs than institutional investors when choosing

whether to pay attention to firm-level information. Indeed, recent empirical evidence supports

the view that retail investors are more susceptible to distractions than institutional investors

(Israeli, Kasznik, and Sridharan, 2021; Da, Hua, Hung, and Peng, 2022). Consistent with this

interpretation and our predictions illustrated in Figure 5, we find that the effect of economic

uncertainty on ERCs is concentrated in the high-IO subsample (0.024, p < 0.01), while

the estimated effect for the low-IO subsample is insignificantly different from zero (0.007,

p > 0.10). The difference in coefficients is large in percentage terms (0.024/0.007 = 343%)

and significantly different from zero at the 10% level, consistent with lower information

acquisition costs amplifying the effects of economic uncertainty on ERCs.

Table 6 re-estimates the regressions from Table 5 with ESVU replacing VIX, to provide

evidence that the effects are attributable to attention rather than the VIX itself and other
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co-varying constructs, in line with Figure 3 from our theoretical analysis. The pattern is

generally similar, albeit weaker in some regressions, plausibly due to the smaller sample

size. Interestingly, the results for the forecast dispersion and idiosyncratic volatility splits are

stronger than those in Table 5, as the effect of ESVU on ERCs is concentrated in the high

forecast dispersion (0.036, p < 0.01) and idiosyncratic volatility (0.034, p < 0.01) subsamples.

These coefficients are also significantly different from those in the corresponding below-median

subsamples (p < 0.10 for both), consistent with heightened variance in earnings (Var[Ea] or

σ2
ea) leading to stronger relations between attention and ERCs.

(Insert Table 6 about here)

4.3 Calibration around earnings announcements

Can our model generate quantitatively similar attention responses to changes in economic

uncertainty? To answer this question, we calibrate our model based on historical data. First,

in our earnings announcement sample period from 1995 to 2020, the VIX averaged 20, with

a daily standard deviation of 8.5. We define U ≡ VIX/100 (VIX values are quoted in

percentage points) and standardize it, i.e., Û ≡ (U − 0.2)/0.085. In our illustration, we will

allow U to take values between 0.1 and 0.4, since during our sample period the 10th and 90th

percentile of VIX were 12 and 30, respectively.

In our sample the average number of firms per quarter is 2,264, and the average number

of announcements per trading day is 53, with a standard deviation of 67.15 To compare,

Frederickson and Zolotoy (2016) report an average of 41 announcements per trading day

with a standard deviation of 61, and Ferracuti and Lind (2021) report an average of 63 and

a standard deviation of 83. Hirshleifer and Sheng (2022) report a higher average, 118, and

a standard deviation of 79. These studies do not separately report the number of unique

firms per year or quarter. Accordingly, we set the total number of firms in the economy as

N = 3, 000 and assume that between 10 and 100 firms announce their earnings on a given

trading day. The remaining calibration parameters are: γ = 10; σe = σε = 0.4 for all firms;

the market portfolio M is a vector whose values are all equal to 1/3000; the volatility of noise

in supply is σx = 1/(3000 × 4) for all firms (which ensures that the probability of having

negative supplies is negligible); all the betas of the announcing firms are 1; and the cost of

15Note that this differs from the mean #Announcements at the firm-announcement level reported in Table
1, as a trading day with N announcements would be counted once in an average across trading days but N
times in an average across firm-announcements.
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information is c = 0.03.16

Panel (a) of Figure 7 plots the response of log Λa to a change in Û , or ∂ log Λa/∂Û , in two

cases: when 10 firms are announcing earnings (solid line) and when 100 firms are announcing

(dashed line). On the horizontal axis we let U vary from 0.1 to 0.4, while the vertical axis

measures the sensitivity of log Λa to changes in Û , consistent with the coefficient c1 in (38).

The plot shows that our calibrated model can match the numbers in Table 3. Furthermore,

the model also correctly implies a lower coefficient when the number of announcers is higher

(in which case price informativeness is higher), in line with the negative coefficients for

#Announcements obtained in Table 3.

(Insert Figure 7 about here)

Panel (b) plots the model-implied ERCs as functions of U when 10 firms are announcing

earnings (solid line) and when 100 firms are announcing (dashed line). Our model gener-

ates plausible magnitudes for ERCs, comparable with coefficients on SUE Decile in Table 4.

The plot also shows that ERCs increase with U but are smaller when more firms announce

earnings, consistent with panel (a) showing that attention is a substitute for price informa-

tiveness. (See also Chen et al., 2020, who document a similar substitution effect between the

acquisition of private information and the supply of public information.)

4.4 CAPM tests

We now turn to the predictions of our model for the CAPM. Corollary 4.1 shows that the

market risk premium is increasing in both ex-ante uncertainty and investor attention, which

implies a steeper SML. Furthermore, Eq. (36) implies that firms’ betas increase on earnings

announcement days, but only if investors pay attention to announcements. In order to test

these predictions, we employ classical Fama and MacBeth (1973) two-step regressions to

estimate firm and portfolio betas. The dataset utilized in our analysis comprises daily excess

returns for individual firms available from CRSP, merged with the EDGAR search data. The

sample period for the EDGAR data ranges from 2003-02-14 to 2017-06-30 and sets the limits

for the final merged sample.

To conduct firm-level analysis, we estimate betas separately for earnings days and high-

attention days. Specifically, we define four indicator variables for each firm i: 1iEA, which

equals 1 on days when firm i announces earnings; 1iHighAtt, which equals 1 on days when

16To the best of our knowledge, the only attempt in the literature to estimate the parameters of Hellwig’s
(1980) noisy rational expectations model is Cho and Krishnan (2000). In line with the estimation in their
Table 2, our calibration assumes that noise in supply is considerably smaller than noise in private information
(σx << σε), and also a reasonable value of ten for the coefficient of risk aversion.
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investor attention to firm i (as measured by the time-detrended ESV(U) of firm i) exceeds

the full-sample median; 1high,i
EA , which equals 1 when investor attention to firm i exceeds the

median computed within the set of earnings announcement days; and 1low,i
EA , which equals 1

when investor attention to firm i is below the median computed within the set of earnings

announcement days. Subsequently, we estimate three time-series regressions for each firm:

rei,t = αiOther + αi∆EA 1iEA +βiOtherr
e
M,t + βi∆EA(1iEA×reM,t) + εi,t (40)

rei,t = αiOther + αi∆A 1iHighAtt +βiOtherr
e
M,t + βi∆A(1iHighAtt×reM,t) + εi,t (41)

rei,t = αiOther + αlow,i∆EA 1low,i
EA +αhigh,i∆EA 1high,i

EA

= + βiOtherr
e
M,t + βlow,i∆EA(1low,i

EA ×r
e
M,t) + βhigh,i∆EA (1high,i

EA ×reM,t) + εi,t,
(42)

where reM,t is the excess return on the market and rei,t is the excess return for firm i.

The first regression examines whether firm betas increase on earnings announcement days,

with βi∆EA in (40) representing the change in firm i’s beta on such days. The second regression

tests whether firm betas vary with investor attention, with βi∆A in (41) measuring the change

in firm i’s beta on days when investor attention to the firm’s information exceeds its sample

median. The third regression directly tests (36), with βhigh,i∆EA in (42) indicating the change in

firm i’s beta on earnings announcement days with heightened investor attention.

We estimate (40)-(42) for each firm and calculate average betas and their standard errors

across firms. Table 7 displays the estimates. Column (1) verifies Patton and Verardo (2012)’s

finding that firm betas rise on earnings announcement days, with an average increase of 0.088

(p < 0.05). Columns (2) and (3) show that firm betas also increase with investor attention

on average, as measured by ESV and ESVU. When the detrended ESV(U) surpasses its

median, betas rise by 0.042 (p < 0.01) and 0.019 (p < 0.01), respectively.

(Insert Table 7 about here)

Columns (4) and (5) divide earnings announcement days into high- and low-attention days,

following (42). Betas increase on earnings announcement days only when investor attention

is high. The average βhigh,i∆EA is positive and statistically significant in both columns, while

βlow,i∆EA is smaller and not statistically significant. Results hold for both attention measures,

with average βhigh,i∆EA being 0.141 (p < 0.01) and 0.123 (p < 0.01) using ESV(U). Overall, our

findings support our model’s prediction that betas of announcing firms increase only when

investors pay attention.

An alternative explanation of the results in Table 7 is that important announcements,

such as those that reveal more news about aggregate economic developments, attract more

attention. In other words, it is not the case that higher attention causes higher betas, but
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rather that announcements associated with higher betas attract more attention. Notably, our

theoretical model aligns with this alternative explanation, as demonstrated in Section 2.1,

Eq. (26), where we show that attention to high-beta firms is more valuable. The measured

variation in betas could encompass both time-varying firm sensitivity to macro fluctuations

and the added effect of heightened attention. We focus our discussion on the incremental

effects of attention, which are a novel implication of our model, but we acknowledge that some

identified effects could be due to increased attention to more informative announcements, i.e.,

naturally time-varying true betas (e.g., Ghysels, 1998).

In portfolio-level analysis, we investigate if the firm-level findings in Table 7 extend to the

portfolio level. To accomplish this, we utilize all firms in our sample for which EDGAR search

data is available to construct 10 beta-sorted portfolios and calculate their value-weighted

daily excess returns. We categorize firms into portfolios based on their full-sample betas and

do not rebalance portfolios, ensuring that each firm is assigned to a unique portfolio. For

each portfolio j and on each trading day, we compute the attention variable 1̄
j
HighAtt,t as the

within-portfolio average of individual dummy variables 1iHighAtt, as previously defined. This

portfolio-specific average can be interpreted as the fraction of firms in portfolio j to which

investors pay heightened attention. Subsequently, we estimate the following regression:

rej,t = αjOther + αj∆A1̄
j
HighAtt,t + βjOtherr

e
M,t + βj∆A(1̄

j
HighAtt,t × reM,t) + εj,t, (43)

where rej,t is the portfolio excess return. Our theory predicts a positive coefficient of βj∆A for

the interaction term between market excess returns and the aggregate attention towards the

portfolio’s constituent firms.

Table 8 presents separate panels for each attention measure. In Panel A, our model’s

prediction using the ESV measure is partially supported, with the interaction coefficient

β∆A being positive and statistically significant in 7 out of 10 portfolios. The findings are

more definitive in Panel B, which uses the ESVU measure. Specifically, 9 out of 10 portfolios

exhibit a positive change in betas, albeit statistically significant in 7 out of 10 portfolios. We

observe a consistent pattern across both panels, where high-beta portfolios exhibit the largest

increases in betas, supporting Eq. (36). According to this equation, the increase in betas on

high-attention days should depend on the exposure parameters, b, with a larger increase in

betas for firms with greater initial exposure to systematic risk.17

(Insert Table 8 about here)

17In Table 8, each portfolio-day is assigned a unique attention measure 1̄
j
HighAtt,t. Although the test

portfolios collectively form the market portfolio, which has a beta of 1 by definition, deviations in individual
portfolio betas, βj

∆A, are driven by different attention values 1̄
j
HighAtt,t across the regressions, and are not

expected to sum up to zero (on any given day, different portfolios have different attention measures).
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Finally, we estimate day-specific CAPMs. Based on Corollary 4.1, both elevated ex-

ante uncertainty and heightened investor attention result in an increase in the market risk

premium and a steeper SML. Table 9 presents regression estimates for day-specific CAPMs,

covering three portfolio sorts: the 10 beta-sorted portfolios developed earlier; 10 beta-sorted

portfolios using the entire universe of US firms; and 25 size/BM-sorted portfolios.18 All

estimates in Table 9 are reported in basis points per day. Our reference point is the all-

days CAPM relationship, displayed in column (1) of each panel. Then, columns (2) and (3)

classify trading days into subsamples with VIX t−1 above its median and in its top quartile,

respectively. Next, columns (4) and (5) classify trading days into subsamples with detrended

ESV above its median and in its top quartile, and columns (6) and (7) do the same for ESVU.

Finally, columns (8) and (9) document the combined effect of high ex-ante uncertainty and

heightened attention on days when the VIX t−1 and ESV(U) are both above their medians.

The table also reports average market returns for each type of day (row ‘Avg. Re
M ’), as

well as the t-statistic of the difference between the CAPM slope estimate and the estimated

market excess return (row ‘Slope test’).

(Insert Table 9 about here)

Focusing on panels A and B, columns (2)-(3) display a steeper SML slope as ex-ante

uncertainty increases. While the results are only statistically significant in panel B, we note

that both the estimated slopes and market excess returns are higher on high-uncertainty

days, and in panel B the slopes are not statistically different from the estimated market excess

return. Turning to high-attention days, Columns (4)-(7) present statistically significant slope

estimates in seven of eight cases across panels A and B, where these slopes are not statistically

different from the estimated market excess returns. Finally, columns (8)-(9) of panels A and

B exhibit notably stronger slope coefficients when heightened attention follows high ex-ante

uncertainty, accompanied by higher estimated market excess returns.

Panel C of Table 9 yields similar inferences, albeit with weaker statistical significance.

This is not too surprising given the well-documented result that the CAPM performs poorly

in these portfolios (Fama and French, 1993, 1996, 2004; Cochrane, 2009). However, even in

this case, columns (4)-(7) show evidence that the SML steepens on days with high aggregate

attention. This effect strengthens with the level of attention. The slope of the SML on

high-attention days is positive and statistically significant in three out of four cases, ranging

from 4.44 (p < 0.05) to 10.04 (p < 0.01) basis points per day. These slope coefficients are

not statistically different from estimated market returns on the same days. Comparing these

18Daily excess returns on 10 beta-sorted portfolios are available at global-q.org/testingportfolios.html and
on 25 size/BM portfolios at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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results with the ones in columns (2)-(3), we notice that attention has a stronger effect on the

slope of the SML than uncertainty.19

Figure 8 provides a graphical representation of Table 9, panels B and C. It plots average

daily excess returns in basis points against betas estimated from time-series regressions.

The top (bottom) panels present results for 10 beta-sorted portfolios (25 size/BM-sorted

portfolios). All plots are day-specific. The left panels plot the CAPM relation estimated on

all days versus days when VIX t−1 is in its top quartile; the center and right panels plot the

CAPM relation on all days versus days when the detrended aggregate ESV(U) measures are

in their top quartiles.

(Insert Figure 8 about here)

The results in the top panels indicate that the SML is steeper on days with high un-

certainty and heightened investor attention, based on analyzing 10 beta-sorted portfolios.

However, the evidence is less strong when using ESV as an attention proxy. For the 25

size/BM portfolios (the bottom panels), the evidence of a steeper SML is stronger on days

with high levels of investor attention, measured by both ESV and ESVU.

In summary, our theory proposes that heightened investor attention to firm-level news

has two effects. First, it increases firm betas, as evidenced by Tables 7 and 8. Second, it

resolves uncertainty, which in turn leads to a steeper SML, as shown in Table 9 and Figure

8. Therefore, our paper provides a unified theoretical explanation for the relation between

attention and the CAPM, demonstrating that investor attention to firm-level news is the

mechanism behind both the increase in betas on announcement days and the steepening of

the CAPM relation.

More generally, because in our model heightened attention resolves uncertainty, we should

observe a steeper CAPM relation on days with strong uncertainty resolution. A quick test of

this statement is readily available: broadly defining days with high values of log(VIXt−1/VIXt)

as days with strong uncertainty resolution, testing the CAPM on days when this proxy is

high yields robust CAPM relations in any portfolio sorts and at the individual stock level.

While this proxy for uncertainty resolution may be crude, the results nevertheless suggest

that models incorporating uncertainty and attention fluctuations to generate time variation

in uncertainty resolution (e.g., Andrei and Hasler, 2015, 2019; Benamar et al., 2021) could

be useful for examining the cross-section of asset returns.

19Although our model speaks directly to returns occurring in a similar latency as attention allocation,
it seems plausible that short-window attention effects would be attenuated over longer return windows.
Additional analysis (untabulated, available from the authors) supports the notion of daily attention effects
attenuation when considering longer-horizon return windows.
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5 Conclusion

This paper examines the relationship between economic uncertainty and investor attention

to firm-level earnings announcements. In a multi-firm equilibrium model, we show that

heightened economic uncertainty causes investors to allocate more attention to firm-level

information. Investors pay incrementally more attention to the earnings announcements of

high-beta firms, firms with more informative earnings announcements, higher idiosyncratic

volatility of earnings, less informative prices, and lower information acquisition costs.

The central premise of our model is that investors learn valuable information about the

economy from earnings announcements. Consequently, investors’ learning intensifies when

market-wide uncertainty is high. This implies a steeper beta-return relation on days of

heightened investor attention. Moreover, our model predicts that betas of announcing firms

increase with investors’ attention to earnings announcements.

The data support these predictions. Using two proxies for investor attention to firm-

level information (SEC EDGAR search traffic and Google stock ticker searches), we find

that investors pay more attention to firm-level earnings announcements on days with high

economic uncertainty. Our analysis further reveals that prices respond to earnings news more

strongly when there is more significant economic uncertainty. These results are concentrated

in firms with high CAPM beta, higher institutional ownership, and prior share turnover. We

view these as consistent with our theoretical predictions related to cross-sectional variation in

the benefit-to-cost ratio of information. Finally, we find strong empirical support for higher

betas on high-attention days and a steeper CAPM relation on days of heightened investor

attention to firm-level information.

In conclusion, these results suggest that economic uncertainty plays a vital role in shap-

ing investor attention to firm-level information. Investors learn valuable information from

earnings announcements, and their learning intensifies when market-wide uncertainty is high.

This has implications for market risk pricing, as more reliable risk pricing occurs not only

when uncertainty is high but also when investors respond to high uncertainty by intensifying

their learning and processing of information. Thus, models that incorporate uncertainty and

attention fluctuations to generate time variation in the resolution of uncertainty may provide

crucial insights into the underlying mechanisms that drive asset prices.
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A Appendix

A.1 Proof of Proposition 1

Notation used thorough the Appendix:

• We denote I as the identity matrix, 1 as a vector of ones, and 0 as a vector/matrix of zeros.
These vectors and matrices are always assumed to have the conformable dimension, which we
do not specify below in order to avoid overly cumbersome notation.

• The set of announcing firms is A = {1, 2, ..., A}. Within this set, firms are indexed by a.

• The set of investor types is the power set of A, P(A), of dimension 2A. Within this set,
investor types are indexed by k.

• k̄ denotes the complement of an investor type k ⊆ A, that is, k̄ = A \ k.

• |k| denotes the cardinality of the set k.

• ιa is a standard basis vector of dimension N with all components equal to 0, except the a-th,
which is 1. ιk (ιk̄) represents the matrix with all the column vectors {ιa | a ∈ k} ({ιa | a ∈ k̄}).
ι represents the matrix with all the column vectors {ιa | a ∈ A}.

• ha ≡ Λa
γσ2
εa

, for a ∈ A. hk and hk̄ denote the column vectors {ha | a ∈ k} and {ha | a ∈ k̄}.

• diag[yj | j ∈ z] denotes a diagonal matrix whose diagonal is {yj | j ∈ z}. δhk (δhk̄) is a
diagonal matrix whose diagonal is hk (hk̄), e.g., δhk = diag[{ha | a ∈ k}].

• εk and εk̄ denote the column vectors {εa | a ∈ k} and {εa | a ∈ k̄}, and ε =

[
εk
εk̄

]
. Similarly

for xk, xk̄, and x.

• Σεk denotes the covariance matrix of the vector εk (a diagonal matrix whose elements are
{σ2

εa | a ∈ k}). Σεk̄ denotes the covariance matrix of the vector εk̄. Σxk̄ denotes the covariance
matrix of the vector xk̄.

Learning for type k investors

Type k investors observe the earnings announcements {Ea | a ∈ k}, and learn from prices. Conjec-
ture 1 implies that the only prices useful for learning are {P̂a | a ∈ k̄}. (If an investor observes Ea
then the price signal P̂a is a noisy version of Ea and is redundant for learning.)

Group the information set of type k investors into two vectors, Ek of dimension |k| and P̂k̄ of
dimension |k̄|. Then we can writeD

Ek

P̂k̄

 =

 I
ι′k

δhk̄ι
′
k̄

D +

0 0
I 0
0 δhk̄

[εk
εk̄

]
+

0
0
ι′
k̄

x, (A.1)

and thusD
Ek

P̂k̄

 ∼ N
0

0
0

 ,
 Var[D] Var[D]

[
ιk ιk̄δhk̄

][
ι′k

δhk̄ι
′
k̄

]
Var[D]

[
ι′k

δhk̄ι
′
k̄

]
Var[D]

[
ιk ιk̄δhk̄

]
+

[
Σεk 0
0 δh2

k̄
Σεk̄ + Σxk̄

] .

(A.2)
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We will apply the Projection Theorem, which we write here for convenience.

Projection Theorem. Consider the n-dimensional normal random variable[
θ
s

]
∼ N

([
µθ

µs

]
,

[
Σθ,θ Σθ,s

Σs,θ Σs,s

])
. (A.3)

Provided Σs,s is non-singular, the conditional density of θ given s is normal with conditional mean
and conditional variance-covariance matrix:

E[θ|s] = µθ + Σθ,sΣ
−1
s,s (s− µs) (A.4)

Var[θ|s] = Σθ,θ −Σθ,sΣ
−1
s,sΣs,θ. (A.5)

Applied to (A.2), the Projection Theorem together with the Woodbury Matrix Identity imply:

Vark[D] =

(
Var[D]−1 +

[
ιk ιk̄δhk̄

] [Σ−1
εk 0
0 (δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
ι′k

δhk̄ι
′
k̄

])−1

(A.6)

=

(
Var[D]−1 +

[
ιk ιk̄

] [Σ−1
εk 0
0 δh2

k̄
(δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
ι′k
ι′
k̄

])−1

(A.7)

=

(
Var[D]−1 + ι diag

[
`ka
σ2
εa

| a ∈ A
]
ι′
)−1

, (A.8)

with `ka defined in (13). We have thus obtained τ k ≡ Vark[D]−1 as in Proposition 1. This simple
form for τ k allows us to compute its determinant using the Matrix Determinant Lemma:

det(A + UWV′) = det(W−1 + V′A−1U) det(W) det(A), (A.9)

where A = Var[D]−1, U = ι, W = diag
[
`ka
σ2
εa
| a ∈ A

]
, and V′ = ι′.

The Matrix Determinant Lemma implies

det(τ k) = det
(
Var[D]−1

)( A∏
a=1

`ka
σ2
εa

)
det

(
diag

[
σ2
εa

`ka
| a ∈ A

]
+ ι′Var[D]ι

)
(A.10)

= det
(
Var[D]−1

)( A∏
a=1

`ka
σ2
εa

)
det

(
diag

[
σ2
εa

`ka
+ σ2

ea | a ∈ A
]

+ U2bAb′A

)
, (A.11)

where bA is the vector of announcer firms’ exposure to the systematic component f .
Further apply the Matrix Determinant Lemma to the last term:

det(τ k) = det
(
Var[D]−1

)( A∏
a=1

`ka
σ2
εa

)(
A∏
a=1

(
σ2
εa

`ka
+ σ2

ea

))(
1 + b′A diag

[
`ka

`kaσ
2
ea + σ2

εa

| a ∈ A
]
U2bA

)
(A.12)

= det
(
Var[D]−1

)( A∏
a=1

`kaσ
2
ea + σ2

εa

σ2
εa

)(
1 + U2

A∑
a=1

`kab
2
a

`kaσ
2
ea + σ2

εa

)
, (A.13)

which completes the proof of Proposition 1.
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A.2 Proof of Proposition 2

The expected utility of a type ∅ investor (uninformed) at time 1 is:

U∅1 = max
qk

E∅1
[
−e−γ(W ∅−c

∑A
a=1 I

∅
a)
]

= max
qk

E∅1
[
−e−γ(q∅)′Re

]
. (A.14)

Further replacing the optimal portfolio choice from Eq. (7) yields

U∅1 = −E∅1
[
e−E∅1[Re]′ Var∅1[Re]−1Re

]
(A.15)

= −e−
1
2
E∅1[Re]′ Var∅1[Re]−1 E∅1[Re]. (A.16)

Assume that a type ∅ investor considers acquiring information and becoming of type k ∈P(A),
where |k| > 0. At time 1, from the perspective of the type ∅ investor, Ek1[Re] is a random vector.
Denote this random vector by z+m, with mean m and variance Σ (i.e., z has mean 0 and variance
Σ). By the law of iterated expectations,

m ≡ E∅1[Ek1[Re]] = E∅1[Re], (A.17)

and by the law of total variance,

Σ ≡ Var∅1[Ek1[Re]] = Var∅1[Re]−Vark1[Re]. (A.18)

Therefore, for the type ∅ investor, −1
2 E

k
1[Re]′Vark1[Re]−1 Ek1[Re] (that is, the random exponent

in (A.16), written for type k) is a random scalar that can be written as (define Σ∅ ≡ Var∅1[Re] to
simplify notation):

− 1

2
Ek1[Re]′Vark1[Re]−1 Ek1[Re] = −1

2
(z + m)′(Σ∅ −Σ)−1(z + m) (A.19)

= z′
(
−1

2
(Σ∅ −Σ)−1

)
︸ ︷︷ ︸

F

z +
(
−m′(Σ∅ −Σ)−1

)
︸ ︷︷ ︸

G′

z + m′
(
−1

2
(Σ∅ −Σ)−1

)
m︸ ︷︷ ︸

H

. (A.20)

Our aim is to compute E∅1[Uk1 ], i.e., the type ∅ agent’s expectation of what her expected utility
will be if she changes type to k. We will apply the following Lemma (Veldkamp, 2011, p. 102):

Lemma A2. Consider a random vector z ∼ N (0,Σ). Then,

E
[
ez
′Fz+G′z+H

]
= det(I− 2ΣF)−

1
2 e

1
2
G′(I−2ΣF)−1ΣG+H. (A.21)

Compute first

I− 2ΣF = I− 2Σ

(
−1

2
(Σ∅ −Σ)−1

)
(A.22)

= Σ∅(Σ∅ −Σ)−1, (A.23)

which, using (A.18), leads to the determinant in Lemma A2:

det(I− 2ΣF) =
det(Σ∅)

det(Vark1[Re])
=

det(τ k)

det(τ ∅)
. (A.24)
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The exponent in Lemma A2 is:

1

2
G′(I− 2ΣF)−1ΣG + H (A.25)

=
1

2

(
−m′(Σ∅ −Σ)−1

)
(Σ∅ −Σ)(Σ∅)−1Σ

(
−m′(Σ∅ −Σ)−1

)′
−m′

1

2
(Σ∅ −Σ)−1m (A.26)

=
1

2
m′(Σ∅)−1Σ(Σ∅ −Σ)−1m− 1

2
m′(Σ∅ −Σ)−1m (A.27)

=
1

2
m′
(

(Σ∅)−1Σ− I
)

(Σ∅ −Σ)−1m (A.28)

= −1

2
m′(Σ∅)−1m. (A.29)

We can then use Lemma A2 to write

E∅1[Uk1 ] = −eγc|k| E∅1
[
e−

1
2
Ek1 [Re]′ Vark1 [D]−1 Ek1 [Re]

]
(A.30)

= −eγc|k|
√

det(τ ∅)

det(τ k)
e−

1
2
E∅1[Re]′ Var∅1[Re]−1 E∅1[Re] (A.31)

= U∅1 eγc|k|
√

det(τ ∅)

det(τ k)
. (A.32)

At time t = 0, the type ∅ investor compares E0[U∅1 ] with E0[Uk1 ] and acquires the additional
signals if and only if

E0[U∅1 ] < E0[Uk1 ] = E0[E∅1[Uk1 ]], (A.33)

which, after replacement of (A.32), yields eγc|k|
√

det(τ ∅)/ det(τ k) < 1 (the division by E0[U∅1 ] < 0
flips the inequality sign). Thus, an investor of type ∅ changes type to k if and only if

Bk
∅ ≡

det(τ k)

det(τ ∅)
e−2γc|k| > 1. (A.34)

Consider now two investor types k and k′ as in Proposition 2. The empty set ∅ is the only
common subset of both k and k′, for all k, k′ ∈P(A). Thus, the uninformed investor is a common
reference point for type k and type k′ investors, and therefore the investor with the lowest benefit-
cost ratio among {Bk

∅ , B
k′

∅ } will always choose to migrate to the other type. In other words, a type
k investor changes type from k to k′ ∈P(A) \ k if and only if

Bk′

∅
Bk
∅
> 1 ⇐⇒ 1

2γ
ln

det(τk
′
)

det(τk)
> c(|k′| − |k|). (A.35)

This holds regardless of the sign of |k′| − |k|.

A.3 Proof of Theorem 1

An important property of the benefit-cost ratios Bk
∅ , for k ∈ P(A) \ ∅, is that they can be de-

composed into the product of consecutive one-step benefit-cost ratios. Formally, let k(i) be the ith

element of k and κ(i) the subset of k that contains all its elements up to and including k(i). Using
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the convention κ(0) = ∅ and defining B
κ(i−1)∪{k(i)}
κ(i−1) ≡ det(τκ(i−1)∪{k(i)})

det(τκ(i−1))
e−2γc, we can write

Bk
∅ =

|k|∏
i=1

B
κ(i−1)∪{k(i)}
κ(i−1) . (A.36)

We first establish the following Lemma.

Lemma A3. Consider an announcer a ∈ A and any type k ⊆ A \ {a}. Then

arg min
k

B
k∪{a}
k = A \ {a} (A.37)

arg max
k

B
k∪{a}
k = ∅ (A.38)

Lemma A3 states that the type k for which the one-step benefit-cost ratio B
k∪{a}
k attains its

minimum is the highest cardinality type that excludes a, that is, A \ {a}; and the type k for which

B
k∪{a}
k attains its maximum is the empty set ∅. In other words, attention has diminishing returns:

the lowest benefit from observing Ea belongs to the investor who already observes all the other
earnings announcements; and the highest benefit belongs to the uninformed investor. The proof of

Lemma A3 follows from writing explicitly B
k∪{a}
k by means of Proposition 1,

B
k∪{a}
k =

det(τ k∪{a})

det(τ k)
e−2γc (A.39)

=

 σ2
ea + σ2

εa

`aσ2
ea + σ2

εa

+
b2a

1
U2 +

∑A
α=1

`kαb
2
α

`kασ
2
eα+σ2

εα

(1− `a)σ2
εa

(`aσ2
ea + σ2

εa)
2

 e−2γc, (A.40)

which is indeed minimized when `kα = 1, ∀α ∈ A \ {a}, and maximized when `kα < 1, ∀α ∈ A \ {a}.
In the former case, k must be A \ {a}; in the latter, k must be ∅. (NB: Lemma A3 is a direct
consequence of the fact that the function ln(Bk

∅ ) is linearly related to the entropy defined in (14):

ln(Bk
∅ ) = 2(H∅[D] − Hk[D] − γc|k|). By the submodularity property of the entropy, ln(Bk

∅ ) is

submodular and therefore B
k∪{a}
k has diminishing returns. See also Appendix A.7.)

Lemma A3, together with the multiplicative property (A.36), will allow us obtain the bounds
cmin and cmax. We will first derive the lower bound cmin. When the information cost is below cmin,
all investors are informed, i.e., λA = 1. In order for this to be a stable equilibrium, the following
conditions must hold simultaneously:

BAA\{a} ≥ 1 ∀a ∈ A, (A.41)

meaning that no investor of type A finds it optimal to renounce being attentive to any signal Ea.
If these conditions hold simultaneously, then one can easily show using the multiplicative property
(A.36) and Lemma A3 that

BAk ≥ 1, for any type k ⊂ A, (A.42)

meaning that no investor of type A finds it optimal to be of any other possible type. (This can be
shown by writing BAk as a product as in (A.36) and using Lemma A3 for each individual term of
the product; it is a direct consequence of the property of diminishing returns to attention.)
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Conditions (A.41) further imply minaB
A
A\{a} ≥ 1, which will pin down cmin. Using the fact that

λA = 1, the definition of `a in Eq. (13) yields upper limits for all the learning coefficients `a,

¯̀
a =

1

1 + γ2σ2
xaσ

2
εa

∀a ∈ A, (A.43)

and thus cmin solves

e2γcmin = min
a

 σ2
ea + σ2

εa
¯̀
aσ2

ea + σ2
εa

+
b2a

1
U2 +

∑A
α=1

¯̀
αb2α

¯̀
ασ2

eα+σ2
εα

(1− ¯̀
a)σ

2
εa

(¯̀
aσ2

ea + σ2
εa)

2

 . (A.44)

Since the right hand side equals mina(det(τA)/det(τA\{a}) and thus is always larger than one,
equation (A.44) has a unique, strictly positive solution cmin. It can be easily checked that cmin is
strictly increasing in U .

Consider now an equilibrium in which no investor is informed, or λ∅ = 1. In order for this to be
a stable equilibrium, the following conditions must hold simultaneously:

Ba
∅ ≤ 1 ∀a ∈ A. (A.45)

If these conditions hold, then a consequence of the property of diminishing returns to attention is
that Bk

∅ ≤ 1 holds for any type k ⊆ A. (This can be shown by writing Bk
∅ as a product as in (A.36)

and using Lemma A3 for each individual term of the product.)
Conditions (A.45) further imply maxaB

a
∅ ≤ 1, and λ∅ = 1 leads to `a = 0 ∀a ∈ A. Thus, cmax

solves

e2γcmax = max
a

(
1 +

b2aU
2 + σ2

ea

σ2
εa

)
. (A.46)

This equation has a unique, strictly positive solution cmax, which is strictly increasing in U . Fur-
thermore, since Ba

∅ > BAA\{a} ∀a ∈ A (by Lemma A3), it is clear that maxaB
a
∅ > minaB

A
A\{a} and

therefore cmax > cmin. This completes the proofs of cases (C) and (A) of Theorem 1.
In case (B) of Theorem 1, the information cost is c ∈ (cmin, cmax). Clearly, when c ∈ (cmin, cmax)

both conditions (A.41) and (A.45) are violated and thus the equilibrium cannot be λ∅ = 1 or λA = 1.
Thus, in equilibrium there exists a set {λk | k ∈ P(A)} such that:

∑
k∈P(A) λ

k = 1; λ∅ < 1; and

λA < 1. Consider now all the pairs of types {k, k′} ∈P(A). For each pair, there are four cases:

(i) {λk > 0} ∧ {λk′ > 0}: this can be a stable equilibrium (meaning that no investor has an
incentive to migrate from type k to type k′ or vice versa) only if Bk′

∅ /B
k
∅ = 1.

(ii) {λk = 0} ∧ {λk′ > 0}: this can be a stable equilibrium (meaning that no investor of type k′

has an incentive to migrate to type k) only if Bk′

∅ /B
k
∅ ≥ 1.

(iii) {λk > 0} ∧ {λk′ = 0}: this is the reversal of the previous case and requires Bk′

∅ /B
k
∅ ≤ 1.

(iv) {λk = 0} ∧ {λk′ = 0}: in this case there is no condition on Bk′

∅ /B
k
∅ since there are no investors

of types k and k′.

Conditions (i)-(iv) are both necessary and sufficient for the stability of the information market
equilibrium. See Appendix A.7 for an algorithm that converges to the equilibrium for any set of
positive initial values {λk0 > 0 | k ∈P(A)} such that

∑
k λ

k
0 = 1.
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A.4 Proof of Lemma 1

Lemma 1 results directly after writing τ k for each investor type under this form:

τ k = Var[D]−1 + ι diag

[
`ka
σ2
εa

| a ∈ A
]
ι′, (A.47)

where ι is a N × A matrix whose columns are the standard basis vectors ιa for all the announcing
firms (vectors having all components equal to 0, except the a-th, which is 1).

The weighted average precision is then

τ =
∑

k∈P(A)

λkτ k = Var[D]−1 + ι diag

 ∑
k∈P(A)

λk
`ka
σ2
εa

| a ∈ A

 ι′, (A.48)

with `ka defined in (13). Furthermore,

∑
k∈P(A)

λk
`ka
σ2
εa

=
(1− Λa)`a

σ2
εa

+
Λa
σ2
εa

=
Λ2
a + Λaγ

2σ2
xaσ

2
εa

Λ2
aσ

2
εa + γ2σ2

xaσ
4
εa

= πa(Λa), (A.49)

which yields (21).

A.5 Proof of Proposition 3

We will use the market clearing condition to solve for the undetermined price coefficients:

∑
k∈P(A)

λk
Vark[D]−1

γ
Ek[D]− τ

γ
P + x = M. (A.50)

Using the Projection Theorem and ha ≡ Λa
γσ2
εa

we can compute

Vark[D]−1 Ek[D] =

(
Var[D]−1 +

[
ιk ιk̄δhk̄

] [Σ−1
εk 0
0 (δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
ι′k

δhk̄ι
′
k̄

])
×

×Var[D]
[
ιk ιk̄δhk̄

]([ ι′k
δhk̄ι

′
k̄

]
Var[D]

[
ιk ιk̄δhk̄

]
+

[
Σεk 0
0 δh2

k̄
Σεk̄ + Σxk̄

])−1 [
Ek

P̂k̄

]
,

(A.51)

which simplifies to

Vark[D]−1 Ek[D] =
[
ιk ιk̄δhk̄

] [Σ−1
εk 0
0 (δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
Ek

P̂k̄

]
(A.52)

=
[
ιk ιk̄

] [Σ−1
εk 0

0 diag
[

γΛa
Λ2
a+γ2σ2

εaσ
2
xa
| a ∈ k̄

]] [Ek

P̂k̄

]
. (A.53)

According to Conjecture 1,

P̂k̄ = diag

[
Λa
γσ2

εa

| a ∈ k̄
]

Ek̄ + xk̄, (A.54)
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which, after replacement into (A.53), yields:

Vark[D]−1 Ek[D] =ιk diag

[
1

σ2
εa

| a ∈ k
]

Ek + ιk̄ diag

[
Λ2
a

Λ2
aσ

2
εa + γ2σ4

εaσ
2
xa

| a ∈ k̄
]

Ek̄

+ ιk̄ diag

[
γΛa

Λ2
a + γ2σ2

εaσ
2
xa

| a ∈ k̄
]

xk̄.

(A.55)

We now go back to (A.50), which we write as

τP =
∑

k∈P(A)

λk Vark[D]−1 Ek[D] + γx− γM, (A.56)

which, after replacement of (A.55) becomes

τP =

[
diag [πa(Λa) | a ∈ A]

0

]
E + γ

[
diag

[
πa(Λa)σ2

εa
Λa

| a ∈ A
]

0

0 IN−A

]
x− γM, (A.57)

where E is the column vector of earnings announcements and the functions πa(Λa), a ∈ A are
defined in Lemma 1. We can now verify Conjecture 1:

P̂ =
1

γ

[
diag

[
Λa

πa(Λa)σ2
εa
| a ∈ A

]
0

0 IN−A

][
diag [πa(Λa) | a ∈ A]

0

]
E + x (A.58)

=

[
diag

[
Λa
γσ2
εa
| a ∈ A

]
0

]
E + x, (A.59)

which completes the proof of Proposition 3.

A.6 Proof of Corollary 3.1

Define first Π ≡ diag [πa(Λa) | a ∈ A]. From (A.57), the matrix of response coefficients to E for all
firms in the economy, α, is given by

α = τ−1ιΠ = (Var[D]−1 + ιΠι′)−1ιΠ, (A.60)

where ι represents the matrix with all the column vectors {ιa | a ∈ A}. Multiplying with Πι′ and
applying the Woodbury matrix identity yields:

Πι′α = Π− (Π−1 + ι′Var[D]ι)−1. (A.61)

We recognize that ι′α = αA and ι′Var[D]ι = Var[DA], where DA is the A× 1 vector of payoffs
for the announcing firms. Thus, after multiplication with Π−1, we obtain Eq. (24):

αA = I− (I + Var[DA]Π)−1. (A.62)

The earnings response coefficients of the announcing firms are given by the diagonal elements of
the matrix αA. We also note that Eq. (24) can alternatively be written α−1

A = I + Π−1 Var[DA]−1,
by means of the Woodbury matrix identity.
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A.7 Equilibrium solution algorithm

We will first show that the maximization problem (6) is equivalent with the simplified form (25):

max
k∈P(A)

E0

[
max
qk

Ek1
[
−e−γ(Wk−c|k|)

]]
= max

k∈P(A)
eγc|k| E0

[
max
qk

Ek1
[
−e−γ(qk)

′
Re
]]

(A.63)

= max
k∈P(A)

eγc|k| E0

[
−e−

1
2
Ek1 [Re]′ Vark1 [Re]−1 Ek1 [Re]

]
, (A.64)

which, after using (A.32) and the law of iterated expectations, yields

max
k∈P(A)

eγc|k| E0

√det(τ ∅)

det(τ k)
U∅1

 = max
k∈P(A)

eγc|k|

√
det(τ ∅)

det(τ k)
E0

[
U∅1
]
. (A.65)

We notice that E0

[
U∅1
]

is a constant that does not depend on the individual choice of the

investor. Dividing by this (negative) constant yields

max
k∈P(A)

1

2
ln(det(τ k))− 1

2
ln(det(τ ∅))− γc|k| = max

k∈P(A)

1

2
lnBk

∅ , (A.66)

and therefore the optimization problem at time 0 for each investor in this economy is (25).
To prove that the function lnBk

∅ is submodular, consider two types k, k′ ∈ P(A) with k ⊆ k′

and a ∈ A \ k′, then use (A.39)-(A.40) to compute

lnB
k∪{a}
∅ − lnBk

∅ = lnB
k∪{a}
k (A.67)

= ln

 σ2
ea + σ2

εa

`aσ2
ea + σ2

εa

+
b2a

1
U2 +

∑A
α=1

`kαb
2
α

`kασ
2
eα+σ2

εα

(1− `a)σ2
εa

(`aσ2
ea + σ2

εa)
2

− 2γc. (A.68)

The same difference is lower when written for k′ instead of k, due to the term
∑A

α=1
`kαb

2
α

`kασ
2
eα+σ2

εα
in

the denominator (this term is larger when written for k′ because k ⊆ k′). Therefore,

lnB
k∪{a}
∅ − lnBk

∅ ≥ lnB
k′∪{a}
∅ − lnBk′

∅ , (A.69)

and thus the function lnBk
∅ is indeed submodular. We further prove the following Lemma.

Lemma A4. For any two types k, k′ ∈ P(A) and λk > 0, a migration of a positive mass of
investors z < λk from k to k′ decreases Bk′

∅ /B
k
∅ .

Proof. Consider a type k ∈P(A) and its complement k̄ = A \ k. Using Proposition 1, write

det(τ k) = det(Var[D]−1)

(∏
a∈k

σ2
ea + σ2

εa

σ2
εa

)∏
a∈k̄

`aσ
2
ea + σ2

εa

σ2
εa


×

1 + U2
∑
a∈k

b2a
σ2
ea + σ2

εa

+ U2
∑
a∈k̄

`ab
2
a

`aσ2
ea + σ2

εa

 .

(A.70)

A migration from k → k′ increases the terms
∏
a∈k̄

`aσ2
ea+σ2

εa
σ2
εa

and
∑

a∈k̄
`ab2a

`aσ2
ea+σ2

εa
, while all
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the other terms of the decomposition (A.70) remain constant. Thus, det(τ k) increases. One can
similarly show that det(τ k

′
) decreases, and therefore Bk′

∅ /B
k
∅ decreases.

The submodularity property of the function lnBk
∅ , coupled with the monotonicity of Bk′

∅ /B
k
∅

implied by Lemma A4, justify the use of an iterative algorithm that converges towards a stable
equilibrium. The algorithm is adapted from Hu and Shi (2019) and Arkolakis et al. (2021) and
consists of the following steps:

1. Start from any set of positive initial values {λk0 > 0 | k ∈ P(A)} such that
∑

k λ
k
0 = 1.

Compute the benefit-cost ratios {Bk
∅ | k ∈P(A)}.

2. For any two types k, k′ ∈P(A), compute Bk′

∅ /B
k
∅ :

(a) if Bk′

∅ /B
k
∅ = 1, no further changes in λk and λk

′
are needed at this step.

(b) if Bk′

∅ /B
k
∅ > 1, then allow a small fraction of the population of type k investors to

migrate to type k′, which will decrease Bk′

∅ /B
k
∅ (Lemma A4). In the illustration below,

the dot A depicts the initial values {λk, λk′}, located on a line with slope λk
′
/λk. The

algorithm multiplies the slope of the line by m > 1 and finds two new values λknew and
λk
′
new such that λknew + λk

′
new = λk + λk

′
and λknew < λk, thus reaching the dot B:

λk

λk
′

Initial slope λk
′

λk

Migration k′ → k (if Bk′

∅ /B
k
∅ < 1)

Migration k → k′ (if Bk′

∅ /B
k
∅ > 1)

A

B

C

After the multiplication, the new values for λk and λk
′

are given by

λknew = λk
λk + λk

′

λk +mλk′
and λk

′
new = λk

′ λk + λk
′

λk/m+ λk′
. (A.71)

To ensure stability of the solution, m is set to increase with (Bk′

∅ /B
k
∅ − 1). Finally,

compute the benefit-cost ratios {Bk
∅ | k ∈P(A)} using the new values {λknew, λk

′
new}.

(c) if Bk′

∅ /B
k
∅ < 1, apply a similar procedure as in the previous step, moving from A to C.

3. Iterate step 2 until the algorithm has converged to the desired accuracy and the conditions
of Theorem 1 are satisfied. Convergence is guaranteed by Lemma A4.

A.8 (CAPM) Proofs of Proposition 4 and Corollary 4.1

Investors’ learning and uncertainty at time 0 Given information at time 0, investors
form beliefs about D, E0[D] and Var0[D]. The prior variance of D is Var[D] = U2bb′ + Var[e].
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Based on investors’ information set F0 = {G}, we apply the Projection Theorem (page 41), with:

Σθθ = Var[D] = U2bb′ + Var[e] (A.72)

Σθs = Cov[D, G] = Var[D]M = U2b + Var[e]M (A.73)

Σsθ = Cov[G,D] = M′Var[D] = U2b′ + M′Var[e] (A.74)

Σss = Var[G] = M′Var[D]M + σ2
g = U2 + M′Var[e]M + σ2

g , (A.75)

where b is the N × 1 vector of firms’ exposures to the systematic component f , M′b = 1 by
assumption, and e is the vector of idiosyncratic components in firms’ payoffs. Then

Var0[D] = U2bb′ + Var[e]− (U2b + Var[e]M)
1

U2 + M′Var[e]M + σ2
g

(U2b′ + M′Var[e]), (A.76)

or, using the Woodbury Matrix Identity:

τ 0 ≡ Var0[D]−1 = Var[D]−1 +
1

σ2
g

MM′. (A.77)

Investors’ posterior expectation at time 0 is:

E0[D] = Var[D]M(σ2
g + M′Var[D]M)−1G =

1

σ2
g

τ−1
0 MG. (A.78)

where the second equality results from multiplying the first equality with τ−1
0 τ 0 and simplifying.

The market-wide uncertainty at time 0 is defined as U2
0 ≡ Var0[M′D]:

U2
0 = M′Var0[D]M = σ4

g

1

σ2
g

M′
(

Var[D]−1 + M
1

σ2
g

M′
)−1

M
1

σ2
g

(A.79)

= σ4
g

[
1

σ2
g

−
(
σ2
g + M′Var[D]M

)−1
]

=
σ2
gM

′Var[D]M

σ2
g + M′Var[D]M

=
1

1
M′ Var[D]M + 1

σ2
g

. (A.80)

Since M′Var[D]M = U2 + M′Var[e]M, U0 increases if U increases or if σg increases. Furthermore,
limN→∞M′Var[D]M = U2 and we recover Eq. (35) in the text.

Equilibrium To solve for the equilibrium prices, conjecture the following linear forms:

P0 = Γ0G+ ξ00x0 − ζ0M (A.81)

P1 = Γ1G+ ξ01x0 − ζ1M +α1E + ξ1x1 (A.82)

Noise traders hold x0 at time 0 and x0 + x1 at time 1.

Time 1 At time 1, investors’ learning follows Appendix A.1, with the addition that all investors
observe G from the previous period and the conjecture (11) must change to take this into account
(Note: investors’ information at time 0 is public, and thus x0 is observed):

P̂1 ≡ ξ−1
1 (P1 − Γ1G− ξ01x0 + ζ1M) =

A∑
a=1

Λa
γσ2

εa

ιaEa + x1. (A.83)

50



The posterior variance Vark1[D] is now

τ k1 ≡ Vark1[D]−1 = τ 0 +
A∑
a=1

`ka
σ2
εa

ιaι
′
a, (A.84)

where τ 0 is defined in (A.77). The weighted average precision at time 1 is then

τ 1 =
∑

k∈P(A)

λkτ k1 = τ 0 +

[
diag[πa(Λa) | a ∈ A] 0A×(N−A)

0(N−A)×A 0(N−A)×(N−A)

]
, (A.85)

where πa(Λa) is defined as in (22). We can then write a modified version of (A.55):

τ k1 Ek1[D] =ιk diag

[
1

σ2
εa

| a ∈ k
]

Ek + ιk̄ diag

[
Λ2
a

Λ2
aσ

2
εa + γ2σ4

εaσ
2
xa

| a ∈ k̄
]

Ek̄

+ ιk̄ diag

[
γΛa

Λ2
a + γ2σ2

εaσ
2
xa

| a ∈ k̄
]

xk̄ +
1

σ2
g

MG,

(A.86)

which leads to a new market clearing condition (the counterpart of (8) in the baseline setup):∑
k∈P(A)

λkqk1 + x0 + x1 = M, where qk1 =
1

γ
τ k1(Ek1[D]−P1). (A.87)

Thus, prices at time 1 solve a modified version of (A.56) in the baseline setup, and one can check
that they verify the new conjecture (A.83). We thus obtain (32) in Proposition 4:

τ 1P1 =
∑

k∈P(A)

λkτ k1 Ek1[D] + γx0 + γx1 − γM. (A.88)

Time 0 Consider an investor who at time 0 knows that she will be of type k at time 1. We prove
here that knowing her future type does not change her portfolio choice at time 0,

q0 =
1

γ
τ 0(E0[D]−P0), (A.89)

which is Eq. (29) in Proposition 4. The proof of this statement follows Brennan and Cao (1997),
adapted to our Grossman and Stiglitz (1980) setup with information acquisition.

The final wealth of a type-k investor at time 2 is (taking into account the cost of information):

W k = (qk0)′(P1 −P0)− c|k|+ (qk1)′(D−P0), (A.90)

and he expected utility at time 1 for this investor is then given by

Uk1 = − exp

[
−γ(qk0)′(P1 −P0) + γc|k| − 1

2
(Ek1[D]−P1)′τ k1(Ek1[D]−P1)

]
. (A.91)

Defining

ak ≡ Ek1[D]−P0 (A.92)

ck ≡ Ek1[D]−P1, (A.93)
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we can write the expected utility at time 1 as

Uk1 = − exp

[
−γ(qk0)′(ak − ck) + γc|k| − 1

2
(ck)′τ k1ck

]
. (A.94)

To compute the expected utility at time 0, E0[Uk1 ], we need the joint distribution at time 0 of ak

and ck (both of them are random for a time 0 investor). The law of iterated expectations implies:

E0[ak] = E0[D]−P0. (A.95)

Using that E0[x1] = 0, Eq. (A.88) implies

τ 1 E0[P1] =
∑

k∈P(A)

λkτ k1 E0[D] + γx0 − γM (A.96)

= τ 1 E0[D]− γ(M− x0), (A.97)

and thus

E0[P1] = E0[D]− γτ−1
1 (M− x0), (A.98)

which leads to

E0[ck] = E0[D]− E0[D] + γτ−1
1 (M− x0) = γτ−1

1 (M− x0). (A.99)

We now compute variances and covariances of ak and ck:

Var0[ak] = Var0[Ek1[D]] = Var0[D]−Vark1[D] = τ−1
0 − (τ k1)−1, (A.100)

and, defining Ω ≡ Var0[D−P1],

Var0[ck] = Var0

[
Ek1[D−P1]

]
= Ω− (τ k1)−1. (A.101)

Finally, the covariance Cov0[ak, ck] is

Cov0[ak, ck] = Cov0[Ek1[D],Ek1[D]−P1] (A.102)

= Var0[Ek1[D]]− Cov0[Ek1[D],P1] (A.103)

= τ−1
0 − (τ k1)−1 − Cov0[Ek1[D],P1]. (A.104)

To solve for Cov0[Ek1[D],P1], consider the most informed type, denoted by k̃. Then

Cov0[Ek̃1[D],P1] = Covk1[Ek̃1[D],P1]︸ ︷︷ ︸
=0

+ Cov0[Ek1[D],P1], (A.105)

and thus all the covariances Cov0[Ek1[D],P1] take the same value, Cov0[Ek̃1[D],P1].
Then, using (A.88):

Cov0[Ek̃1[D],P1] = Cov0

Ek̃1[D], τ−1
1

 ∑
k∈P(A)

λkτ k1 Ek1[D] + γx0 + γx1 − γM

 , (A.106)
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and since k̃ is the most informed investor, she does not learn from prices and therefore Ek̃1[D] does
not depend on x1. Thus, we can further write the covariance above as

Cov0[Ek̃1[D],P1] = τ−1
1

∑
k∈P(A)

λkτ k1 Cov0[Ek̃1[D],Ek1[D]] (A.107)

= τ−1
1

∑
k∈P(A)

λkτ k1

Covk1[Ek̃1[D],Ek1[D]]︸ ︷︷ ︸
0

+ Cov0[Ek1[D],Ek1[D]]

 (A.108)

= τ−1
1

∑
k∈P(A)

λkτ k1

(
τ−1

0 − (τ k1)−1
)

(A.109)

= τ−1
0 − τ

−1
1 , (A.110)

and thus, going back to (A.104), we obtain

Cov0[ak, ck] = τ−1
0 − (τ k1)−1 −

(
τ−1

0 − τ
−1
1

)
= τ−1

1 − (τ k1)−1. (A.111)

Eqs. (A.95), (A.99), (A.100), (A.101), and (A.111) imply the joint distribution of ak and ck:[
ak

ck

]
∼ N

([
E0[D]−P0

γτ−1
1 (M− x0)

]
,

[
τ−1

0 − (τ k1)−1 τ−1
1 − (τ k1)−1

τ−1
1 − (τ k1)−1 Ω− (τ k1)−1

])
. (A.112)

We are now ready to compute

E0[Uk1 ] = E0

[
− exp

(
−γ(qk0)′(ak − ck) + γc|k| − 1

2
(ck)′τ k1ck

)]
(A.113)

using Lemma A2. To simplify notation, denote by E0[ak] = ma and E0[ck] = mc (these do not

depend on k) and z the demeaned vector,

[
ak

ck

]
=

[
za
zc

]
+

[
ma

mc

]
. The exponent above is

z′
[
0 0
0 −τ k1/2

]
︸ ︷︷ ︸

F

z +
[
−γ(qk0)′ γ(qk0)′ −m′cτ

k
1

]︸ ︷︷ ︸
G′

z + γc|k|+ γ(qk0)′(mc −ma)−
1

2
m′cτ

k
1mc︸ ︷︷ ︸

H

. (A.114)

Let Σ be the covariance matrix in (A.112). Then,

I− 2ΣF = I− 2

[
0 −(τ−1

1 − (τ k1)−1)
τk1
2

0 −(Ω− (τ k1)−1)
τk1
2

]
(A.115)

= I−
[
0 −τ−1

1 τ k1 + I
0 −Ωτ k1 + I

]
=

[
I τ−1

1 τ k1 − I
0 Ωτ k1

]
. (A.116)

Use block inversion to obtain (I− 2ΣF)−1. The diagonal blocks are both invertible, and thus

(I− 2ΣF)−1 =

[
I 0
0 (Ωτ k1)−1

] [
I −(τ−1

1 τ k1 − I)(Ωτ k1)−1

0 I

]
(A.117)

=

[
I [(τ k1)−1 − τ−1

1 ]Ω−1

0 (τ k1)−1Ω−1

]
, (A.118)
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and thus (I− 2ΣF)−1Σ equals[
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1] [τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1

(τ k1)−1Ω−1[τ−1
1 − (τ k1)−1] (τ k1)−1[I−Ω−1(τ k1)−1]

]
. (A.119)

In Lemma A2, the term 1
2G′ (I− 2ΣF)−1 ΣG equals

1

2

[
−γ(qk0)′ γ(qk0)′ −m′cτ

k
1

]
×
[
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1] [τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1

(τ k1)−1Ω−1[τ−1
1 − (τ k1)−1] (τ k1)−1[I−Ω−1(τ k1)−1]

]
×
[
−γqk0

γqk0 − τ k1mc

]
,

(A.120)

and thus it has the following form

1

2
G′ (I− 2ΣF)−1 ΣG + H =

1

2

[
g′1 g′2

] [a b
b′ d

] [
g1

g2

]
=

1

2
g′1ag1 + g′1bg2 +

1

2
g′2dg2 + H, (A.121)

with,

1

2
g′1ag1 ≡

1

2
γ2(qk0)′

(
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1]
)

qk0 (A.122)

g′1bg2 ≡ −γ(qk0)′[τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1[γqk0 − τ k1mc] (A.123)

1

2
g′2dg2 ≡

1

2
[γ(qk0)′ −m′cτ

k
1](τ k1)−1[I−Ω−1(τ k1)−1][γqk0 − τ k1mc]. (A.124)

Taking the first order condition with respect to qk0 yields (using matrix differentiation rules:
∂x′Ax/∂x = (A+A′)x and ∂x′A/∂x = A):

∂ 1
2g
′
1ag1

∂qk0
= γ2

(
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1]
)

qk0 (A.125)

∂g′1bg2

∂qk0
= −2γ2[τ−1

1 − (τ k1)−1]Ω−1(τ k1)−1qk0 + γ[τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1τ k1mc (A.126)

= −2γ2[τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1qk0 + γ[τ−1

1 − (τ k1)−1]Ω−1mc (A.127)

∂ 1
2g
′
2dg2

∂qk0
= γ2(τ k1)−1[I−Ω−1(τ k1)−1]qk0 −

1

2
γ(τ k1)−1[I−Ω−1(τ k1)−1]τ k1mc −

1

2
γ[I− (τ k1)−1Ω−1]mc

(A.128)

= γ2(τ k1)−1[I−Ω−1(τ k1)−1]qk0 − γ[I− (τ k1)−1Ω−1]mc (A.129)

∂H

∂qk0
= γ(mc −ma). (A.130)

All the terms with qk0 sum up to (there are 3 terms; add first term with first half of second term;
add third term with second half of second term; take total; τ−1

1 Ω−1(τ k1)−1 is symmetric):

γ2(τ−1
0 − τ

−1
1 Ω−1τ−1

1 )qk0, (A.131)
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whereas all the terms without qk0 sum up to (there are 3 terms):

γτ−1
1 Ω−1mc − γma, (A.132)

and thus the first order condition with respect to qk0 is

(τ−1
0 − τ

−1
1 Ω−1τ−1

1 )qk0 =
1

γ
(ma − τ−1

1 Ω−1mc). (A.133)

From (A.95) and (A.99), we know that ma = E0[D]−P0 and mc = γτ−1
1 (M− x0). Since none

of them depend on k, it follows that qk0 is independent on k and thus

τ−1
0 q0 − τ−1

1 Ω−1τ−1
1 q0 =

1

γ
(E0[D]−P0)− 1

γ
τ−1

1 Ω−1γτ−1
1 (M− x0). (A.134)

The last terms on each side cancel out by market clearing. We therefore obtain (A.94):

q0 =
1

γ
τ 0(E0[D]−P0). (A.135)

Using (A.78) and market clearing yields (31) and completes the proof of Proposition 4.

Proof of Corollary 4.1 (CAPM) Eqs. (A.135) and (A.99) imply E0[D−P0] = γτ−1
0 (M−x0)

and E0[D−P1] = γτ−1
1 (M− x0). Thus,

E0[P1 −P0] = γ(τ−1
0 − τ

−1
1 )(M− x0). (A.136)

Taking unconditional expectation and defining Re ≡ P1 −P0 yields

E[Re] = γ(τ−1
0 − τ

−1
1 )M, (A.137)

which, written for the market portfolio is

E[Re
M] = γ(M′τ−1

0 M−M′τ−1
1 M) = γ(U2

0 −M′τ−1
1 M), (A.138)

where U2
0 is the market-wide uncertainty at time 0, defined in (A.80). The second term in brackets,

M′τ−1
1 M, decreases with Λa, ∀a. To see this, we know from (A.85) that

τ 1 = τ 0 +

[
diag[πa(Λa) | a ∈ A] 0A×(N−A)

0(N−A)×A 0(N−A)×(N−A)

]
, (A.139)

and that πa(Λa) increases in Λa (Lemma 1). Thus

∂M′τ−1
1 M

∂πa(Λa)
= M′ ∂τ

−1
1

∂πa(Λa)
M (A.140)

= −M′τ−1
1

∂τ 1

∂πa(Λa)
τ−1

1 M (A.141)

= −M′τ−1
1 ιaι

′
aτ
−1
1 M < 0, (A.142)

where we have used that the derivative of the inverse of a matrix K is −K−1KdK−1 (d meaning
derivative: start with Id = (KK−1)d = KdK−1 +K(K−1)d and solve for (K−1)d). Thus, M′τ−1

1 M
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decreases when investors are more attentive and Λa increases.
From (A.137)-(A.138), we obtain the CAPM in Corollary 4.1:

E[Re] =
(τ−1

0 − τ
−1
1 )M

U2
0 −M′τ−1

1 M
E[Re

M]. (A.143)

Firms’ betas: proof of Eq. (36) To understand how market betas relate to firms’ exposures
b to the systematic factor, and how betas are governed by investor attention, we start by analyzing
the numerator in (A.143), or (τ−1

0 − τ
−1
1 )M. From (A.85), τ 1 = τ 0 + ιΠι′, where Π is a A × A

diagonal matrix with the scalars πa(Λa) on its diagonal, Π = diag[πa(Λa) | a ∈ A]. This yields

τ−1
1 = τ−1

0 − τ
−1
0 ι(Π−1 + ι′τ−1

0 ι)−1ι′τ−1
0 , (A.144)

and thus

(τ−1
0 − τ

−1
1 )M = τ−1

0 ι(Π−1 + ι′τ−1
0 ι)−1ι′τ−1

0 M. (A.145)

The term τ−1
0 ι represents the first A columns of τ−1

0 = Var0[D]. Using (A.76), removing all
terms that vanish when N →∞, and denoting by bA = [b1 b2 · · · bA]′,

τ−1
0 ι =

U2σ2
g

U2 + σ2
g

bb′A + Var[e]ι. (A.146)

This implies (using b′M = 1 and further removing vanishing terms):

ι′τ−1
0 M =

U2σ2
g

U2 + σ2
g

bA (A.147)

Π−1 + ι′τ−1
0 ι = Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A, (A.148)

where eA = [e1 e2 · · · eA]′. Using (A.146)-(A.148), the term (τ−1
0 − τ

−1
1 )M is then(

U2σ2
g

U2 + σ2
g

bb′A + Var[e]ι

)(
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.149)

= b
U2σ2

g

U2 + σ2
g

b′A

(
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.150)

+

[
Var[eA]

0

](
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.151)

= b

 U2σ2
g

U2 + σ2
g

−

(
U2 + σ2

g

U2σ2
g

+ b′A(Π−1 + Var[eA])−1bA

)−1


︸ ︷︷ ︸
a strictly positive scalar, ≡ ω1

(A.152)

+

[
Var[eA]

0

](
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.153)
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The scalar ω1 is strictly positive because the diagonal matrix Π−1 + Var[eA] is positive definite.
The last term above equals (solving only for its non-zero part):

Var[eA]

[(
Π−1 Var[eA]−1 + I +

U2σ2
g

U2 + σ2
g

bAb′A Var[eA]−1

)
Var[eA]

]−1
U2σ2

g

U2 + σ2
g

bA (A.154)

=

Π−1 Var[eA]−1 + I︸ ︷︷ ︸
an A×A matrix, A

+bA
U2σ2

g

U2 + σ2
g

b′A Var[eA]−1


−1

U2σ2
g

U2 + σ2
g

bA (A.155)

=
U2σ2

g

U2 + σ2
g

A−1bA

1−

 1
U2σ2

g

U2+σ2
g

+ b′A Var[eA]−1A−1bA︸ ︷︷ ︸
a strictly positive scalar, ω2


−1

b′A Var[eA]−1A−1bA

 (A.156)

=
U2σ2

g

U2 + σ2
g + ω2U2σ2

g



π1(Λ1)σ2
e1

1+π1(Λ1)σ2
e1
b1

π2(Λ2)σ2
e2

1+π2(Λ2)σ2
e2
b2

...
πA(ΛA)σ2

eA

1+πA(ΛA)σ2
eA
bA

 . (A.157)

The scalar ω2 is strictly positive because the diagonal matrix Var[eA]−1A−1 is positive definite.

We can then write market betas, β =
(τ−1

0 −τ
−1
1 )M

M′(τ−1
0 −τ

−1
1 )M

, as

1

ω1 +
U2σ2

g

U2+σ2
g+ω2U2σ2

g

∑A
a=1

πa(Λa)σ2
ea

1+πa(Λa)σ2
ea

ba
N


ω1b +

U2σ2
g

U2 + σ2
g + ω2U2σ2

g



π1(Λ1)σ2
e1

1+π1(Λ1)σ2
e1
b1

π2(Λ2)σ2
e2

1+π2(Λ2)σ2
e2
b2

...
πA(ΛA)σ2

eA

1+πA(ΛA)σ2
eA
bA

0N−A




. (A.158)

In a large economy (N → ∞), the denominator in the first term converges to ω1 and thus we
recover Eq. (36) in the text, with h > 0 defined as:

h ≡ 1

ω1

U2σ2
g

U2 + σ2
g + ω2U2σ2

g

. (A.159)

The result that the announcing firms’ betas increase with attention does not depend on taking
the limit N → ∞. In unreported analysis, we verify this result through simulations in a smaller
economy. We find that the result always holds in our simulations, which we have performed for a
wide range of parameter values.

A.9 Dynamic Model

The dynamic setup comprises an overlapping-generations economy, where a new generation of in-
vestors is born each period. We denote the investors born at time t as generation t. Each generation
is present in the economy for three dates and, as in the static model, engages in information acqui-
sition and trading activities sequentially. In particular, investor i ∈ [0, 1] of generation t− 1 chooses
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to acquire information between t−1 and t, trades securities at t, and consumes final wealth at t+1.
Subsequently, the investors of generation t− 1 liquidate their positions at time t+ 1 by selling them
to the investors of generation t at prevailing market prices. The timeline is depicted in Figure 6.

(Insert Figure 6 about here)

We assume that investors trade a single risky asset and a riskless asset. (Considering multiple
risky assets would significantly complicate the analysis without providing any additional insights.)
The riskless asset is in infinitely elastic supply and pays a gross interest rate of Rf > 1 per period.
The risky asset pays a risky dividend per period,

Dt+1 = bft+1 + et+1, (A.160)

which, as in (1), has two components: a systematic component, ft+1 ∼ N (0, U2
t ), and a firm-specific

component, et ∼ N (0, σ2
e).

Uncertainty (Ut) takes S ≥ 2 possible values, us, s ∈ {1, ..., S}, and we denote the probability of
the event Ut = us by ps. Furthermore, Ut is observable to generation t− 1 investors, who make an
information acquisition choice between t− 1 and t and trade in the market at t. One could assume,
for instance, that Ut is revealed at time t − ε, where ε is very small (e.g., a fraction of a second).
This assumption preserves the sequence of the information acquisition and trading decisions, as in
Grossman and Stiglitz (1980).

At time t, the firm issues an earnings announcement,

Et = Dt+1 + εt, (A.161)

with εt ∼ N (0, σ2
ε). We denote the investors who pay attention to Et as I investors, and those who

decide to remain uninformed as ∅ investors. The indicator variable Ik takes the value 1 if k = I
and 0 if k = ∅. The cost of paying attention to Et is c > 0.

Each investor i ∈ [0, 1] of generation t−1 starts with zero initial wealth and maximizes expected
utility:

max
k∈{I,∅}

Et−1

[
max
qkt

Ekt
[
−e−γ(Wk

t+1−cIk)
]]
, (A.162)

where W k
t+1 ≡ qkt (Dt+1 + Pt+1 −RfPt) ≡ qktRet+1 is type k investor’s terminal wealth.

The risky asset demand of liquidity (noise) traders equals xt, with xt being independently and
identically distributed, xt ∼ N (0, σ2

x). We conjecture the following linear structure for the price,
which is the dynamic equivalent of (10) from the static version of the model:

Pt = αtEt + ξtxt. (A.163)

The equilibrium in the dynamic model follows the same steps as the static model but with
added complexity due to time variation in uncertainty, which creates a non-linearity. Specifically,
the distribution of the future price, Pt+1, becomes non-Gaussian. To restore linearity, we use a
commonly employed approximation method in the literature (Vayanos and Weill, 2008; Gârleanu,
2009). It is important to note that dynamic models of this type have multiple equilibria (e.g.
Banerjee, 2011; Andrei, 2018), and this model exhibits two equilibria: a low-volatility and high-
volatility equilibrium. The results presented in this paper hold for both equilibria.

The following proposition characterizes investors’ attention decision.
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Proposition A5. (a) Investor i is attentive to the earnings announcement if and only if

Var∅t [R
e
t+1]

VarIt [R
e
t+1]

> e2γc. (A.164)

(b) The benefit of information, Var∅t [R
e
t+1]/VarIt [R

e
t+1], increases in Vart[Dt+1] = b2U2

t + σ2
e .

Proof. We start by making the following conjecture for equilibrium prices:

P̂t ≡ ξ−1
t Pt =

Λt
γσ2

ε

ZtEt + xt, (A.165)

where Λt is the fraction of informed investors and Zt will be determined in equilibrium below.
Learning for the informed investor: For the informed investor, the only informative signal

at time t is Et. Application of the Projection Theorem yields

VarIt [Dt+1] =
Vart[Dt+1]σ2

ε

Vart[Dt+1] + σ2
ε

=

(
Vart[Dt+1]−1 +

1

σ2
ε

)−1

, (A.166)

and

EIt [Dt+1] =
Vart[Dt+1]

Vart[Dt+1] + σ2
ε

Et =
VarIt [Dt+1]

σ2
ε

Et. (A.167)

Learning for the uninformed investor: The uninformed investor learns from the price signal
P̂t, and thus the Projection Theorem implies:

Var∅t [Dt+1] =
Vart[Dt+1]σ2

ε

Λ2
tZ

2
t

Λ2
tZ

2
t +γ2σ2

xσ
2
ε

Vart[Dt+1] + σ2
ε

=

(
Vart[Dt+1]−1 +

Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

1

σ2
ε

)−1

, (A.168)

and

E∅t [Dt+1] = Var∅t [Dt+1]
γΛtZt

Λ2
tZ

2
t + γ2σ2

εσ
2
x

P̂t (A.169)

=
Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

Var∅t [Dt+1]

σ2
ε

Et + Var∅t [Dt+1]
γΛtZt

Λ2
tZ

2
t + γ2σ2

εσ
2
x

xt. (A.170)

Equilibrium: When forming optimal portfolios at time t, both I and ∅ investors form ex-
pectations about Pt+1 + Dt+1. Using that Ekt [Pt+1] = 0 ∀k ∈ {I, ∅}, informed investors’ beliefs
are:

EIt [Pt+1 +Dt+1] = EIt [Dt+1] (A.171)

VarIt [Pt+1 +Dt+1] = VarIt [Dt+1] +

S∑
s=1

ps
[
α2
s,t+1(b2U2

s + σ2
e + σ2

ε) + ξ2
s,t+1σ

2
x

]
, (A.172)

where ps represents the probability of reaching the state Us. The last term in (A.172) is the variance
of the future price, Vart[Pt+1], which is the same for I and ∅ investors, and does not change over
time (the information that investors have at t becomes irrelevant at t+ 1; furthermore, at any time
t investors face the same probability distribution over future values of Us, and thus over the values
of the price coefficients at time t+ 1). Thus, we denote the last term in (A.172) by Var[Pt+1].
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Similar reasoning leads to uninformed investors’ beliefs:

E∅t [Pt+1 +Dt+1] = E∅t [Dt+1] (A.173)

Var∅t [Pt+1 +Dt+1] = Var∅t [Dt+1] + Var[Pt+1]. (A.174)

Consider now the optimization problem that all investors face:

max
k∈{I,∅}

Et−1

[
eγcI

k
max
qkt

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]]
, (A.175)

which leads to the following portfolio choice problem of k ∈ {I, ∅} investors:

max
qkt

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]
. (A.176)

In the expectation above, the future price Pt+1 is normally distributed conditional on the future
value of Us. One can write the expectation as

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]
=

S∑
s=1

ps Ekt
[
−e−γqkt (Ps,t+1+Dt+1−RfPt)

]
, (A.177)

where Ps,t+1 is the future price in the state Us. Defining Res,t+1 ≡ Ps,t+1 + Dt+1 − RfPt, the
expectation can be further written as

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]
=

S∑
s=1

ps

(
−e−γq

k
t Ekt [Res,t+1]+ 1

2
γ2(qkt )2 Varkt [Res,t+1]

)
. (A.178)

We resort to an approximation of this function (Vayanos and Weill, 2008; Gârleanu, 2009).
This approximation preserves risk aversion towards diffusion risks, but creates risk neutrality to-
wards discrete jump risks. The approximation is very accurate in this setting, particularly because
Ekt [Res,t+1] = Ekt [Dt+1] + Ekt [Ps,t+1] − RfPt does not vary across future states (Ekt [Ps,t+1] = 0 ∀s),
and thus the future distribution of prices remains symmetric, unimodal, and elliptical (only the

variance Varkt [R
e
s,t+1] changes across future states). First, define Var

k
t [R

e
s,t+1] ≡ γVarkt [R

e
s,t+1] and

replace this above to obtain a function of γ:

f(γ) =

S∑
s=1

ps

(
−e−γq

k
t Ekt [Res,t+1]+ 1

2
γ(qkt )2Var

k
t [Res,t+1]

)
. (A.179)

The Taylor expansion of f(γ) around zero is given by f(γ) = f(0) + γf ′(0) +O(γ), where O(γ)
represents higher-order terms that go to zero faster than γ as γ → 0. Therefore

f(γ) ≈ −1 +
S∑
s=1

ps

(
γqkt Ekt [Res,t+1]− 1

2
γ(qkt )2Var

k
t [R

e
s,t+1]

)
(A.180)

= −1 +
S∑
s=1

ps

(
γqkt Ekt [Res,t+1]− 1

2
γ2(qkt )2 Varkt [R

e
s,t+1]

)
(A.181)

= −1 + γqkt Ekt [Ret+1]− 1

2
γ2(qkt )2 Varkt [R

e
t+1]. (A.182)
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The first order condition with respect to qkt leads to the optimal portfolio of the informed and
uninformed investors:

qIt =
EIt [Ret+1]

γVarIt [R
e
t+1]

and q∅t =
E∅t [Ret+1]

γVar∅t [R
e
t+1]

. (A.183)

Market clearing requires:

Λt
EIt [Dt+1 + Pt+1]−RfPt

γVarIt [R
e
t+1]

+ (1− Λt)
E∅t [Dt+1 + Pt+1]−RfPt

γVar∅t [R
e
t+1]

= −xt, (A.184)

and since the price conjecture (A.163) implies EIt [Pt+1] = E∅t [Pt+1] = 0, this yields

Λt EIt [Dt+1]

VarIt [R
e
t+1]

+
(1− Λt)E∅t [Dt+1]

Var∅t [R
e
t+1]

−

(
Λt

VarIt [R
e
t+1]

+
1− Λt

Var∅t [R
e
t+1]

)
RfPt = −γxt, (A.185)

and we recognize the weighted average precision across investors, denoted hereafter by τt:

τt ≡
Λt

VarIt [R
e
t+1]

+
1− Λt

Var∅t [R
e
t+1]

. (A.186)

Eq. (A.185) further leads to

τtRfPt =
Λt EIt [Dt+1]

VarIt [Dt+1]

VarIt [Dt+1]

VarIt [R
e
t+1]

+
(1− Λt)E∅t [Dt+1]

Var∅t [Dt+1]

Var∅t [Dt+1]

Var∅t [R
e
t+1]

+ γxt. (A.187)

After replacement of (A.166)-(A.167) and (A.168)-(A.170), we obtain

Pt =
τ−1
t

Rf

(
Λt
σ2
ε

VarIt [Dt+1]

VarIt [R
e
t+1]

+
1− Λt
σ2
ε

Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε
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tZ

2
t + γ2σ2

εσ
2
x

Var∅t [Dt+1]

Var∅t [R
e
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)
xt,

(A.188)

which determines the coefficients in the price conjecture Pt = αEt + ξxt. Moreover, the conjecture
(A.165), which requires that αt

ξt
= Λt

γσ2
ε
Zt, together with (A.188) imply that Zt must be

Zt =
VarIt [Dt+1]

VarIt [R
e
t+1]

. (A.189)

We now solve for the equilibrium Λt in the dynamic model. The approximated expected utility
of uninformed investors in (A.182), after replacement of the optimal portfolio choice (A.183), is

U∅t = −1 + γ
E∅t [Ret+1]

γVar∅t [R
e
t+1]

E∅t [Ret+1]− 1

2
γ2

(
E∅t [Ret+1]

γVar∅t [R
e
t+1]

)2

Var∅t [R
e
t+1] (A.190)

=
1

2

E∅t [Ret+1]2

Var∅t [R
e
t+1]
− 1 ≈ −e

− 1
2

E∅t [Ret+1]2

Var∅t [Ret+1] . (A.191)
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where we have used the approximation x − 1 ≈ −e−x. This approximation restores the expected
utility in exponential form and is highly accurate when E∅t [Ret+1]2/(2 Var∅t [R

e
t+1]) is small, which is

likely to be the case: E∅t [Ret+1]2/Var∅t [R
e
t+1] represents the squared Sharpe ratio of the stock from

the perspective of uninformed investors.
Similarly, for an informed investor,

UIt ≈ −eγce
− 1

2

EIt [Ret+1]2

VarIt [Ret+1] . (A.192)

For an uninformed investor, EIt [Ret+1] is a normally distributed random variable with mean

E∅t [Ret+1] (by the law of iterated expectations) and variance Σt ≡ Var∅t [R
e
t+1] − VarIt [R

e
t+1] (by the

law of total variance). Taking expectation at t − 1 of (A.192) as in (A.175) and applying Lemma
A2 yields

Et−1

−eγce− 1
2

EIt [Ret+1]2

VarIt [Ret+1]

 = U∅t eγc
(

VarIt [R
e
t+1]

Var∅t [R
e
t+1]

)1/2

. (A.193)

Since U∅t < 0, the uninformed investor is attentive to the earnings announcement if and only if

Var∅t [R
e
t+1]

VarIt [R
e
t+1]

> e2γc, (A.194)

which proves part (a) of Proposition A5. Using (A.166) and (A.168), the benefit of information is

Var∅t [R
e
t+1]

VarIt [R
e
t+1]

=

Var[Pt+1] + Vart[Dt+1]σ2
ε

Λ2
t Z

2
t

Λ2
t Z

2
t +γ2σ2

xσ
2
ε

Vart[Dt+1]+σ2
ε

Var[Pt+1] + Vart[Dt+1]σ2
ε

Vart[Dt+1]+σ2
ε

. (A.195)

Since
Λ2
tZ

2
t

Λ2
tZ

2
t +γ2σ2

xσ
2
ε
< 1,

Var∅t [Ret+1]

VarIt [Ret+1]
increases in Vart[Dt+1], proving part (b) of Proposition A5.

Proposition A5 recovers the same result as in the static model: the benefit of paying attention
to Et increases with economic uncertainty. Moreover, the benefit of attention is higher when b is
higher and when the volatility σe of the idiosyncratic component is higher.

Proposition A6. The earnings response coefficient in this economy is given by

ERCt =
wt
Rf

Vart[Dt+1]

Vart[Dt+1] + σ2
ε

+
1− wt
Rf

Vart[Dt+1]

Vart[Dt+1] + σ2
ε/`t

, (A.196)

where wt ∈ [0, 1], `t ∈ [0, 1). Both wt and `t are increasing with the fraction Λt of investors who pay
attention to Et. Thus, the earnings response coefficient increases in Λt.

Proof. The ERC (i.e., the sensitivity αt of the price Pt to the earnings announcement Et) follows
directly from (A.186) and (A.188):

αt =
1

Rf

1
Λt

VarIt [Ret+1]
+ 1−Λt

Var∅t [Ret+1]

(
Λt VarIt [Dt+1]

VarIt [R
e
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+
(1− Λt) Var∅t [Dt+1]
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e
t+1]σ2

ε

Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

)
, (A.197)
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which, after defining wt and `t as

wt =

Λt
VarIt [Ret+1]

Λt
VarIt [Ret+1]

+ 1−Λt
Var∅t [Ret+1]

and `t =
Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

< 1, (A.198)

yields (A.196).
Proposition A6 shows that the ERC is a weighted average. According to (A.198), a higher

fraction Λt increases the weight placed on the ratio Vart[Dt+1]
Vart[Dt+1]+σ2

ε
, which, due to the fact that `t < 1,

raises the weighted average. Moreover, Equation (A.198) indicates that a higher Λt increases `t,

which further boosts Vart[Dt+1]
Vart[Dt+1]+σ2

ε/`t
and, therefore, the weighted average. Hence, both effects

confirm that a higher fraction of attentive investors leads to an increase in the ERC.

In Proposition A6, `t is the dynamic counterpart of the learning coefficient defined in (13) for
the static model. Two effects take place when uncertainty increases. The first effect is an increase
in both terms of (A.196) through Vart[Dt+1]. The second effect follows from Proposition A5: the
increase in economic uncertainty increases investor attention, and therefore both wt and `t increase,
further strengthening the ERC. We thus recover the intuition from the static model: the ERC
increases with economic uncertainty, both directly through an increase in the variance of the firm’s
payoff Vart[Dt+1] and indirectly through an increase in investor attention. The two effects are
stronger for firms with a higher b or idiosyncratic volatility σe.

Finally, Proposition A5 shows that regardless of prior information acquisition decisions, the
benefit of paying attention to the earnings announcement increases with uncertainty at time t.
Thus, although investors’ search for information beforehand may dampen the effect of an increase
in uncertainty on the conditional variance Vart[Dt+1], greater investor attention increases wt and `t,
strengthening the ERC. These effects guarantee that heightened investor attention increases ERCs.
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B Variable definitions

Variable Description

VIX Closing value of VIX on the trading day prior to the earnings announcement.
Source: CRSP.

ESV Log daily number of EDGAR downloads of the company’s filings from SEC
EDGAR. Source: SEC.

ESVU Log daily number of EDGAR downloads of the company’s filings from unique IP
addresses. Source: SEC.

ISVI Investor Search Volume Index based on investors’ Google searches of stock tickers.
Source: DeHaan, Lawrence, and Litjens (2021).

EARET Compound excess return over the size decile portfolio for earnings announcement
trading date and one trading day after. Source: CRSP.

SUE Decile Earnings surprise relative to analyst consensus forecasts deflated by quarter-end
share price. Source: IBES Summary File, CRSP.

abs(SUE Decile Absolute value of standardized (mean-zero and unit-variance) SUE Decile. Source:
IBES Summary File, CRSP.

PreRet Compound excess return over the size decile portfolio for earnings announcement
trading date -10 to -1. Source: CRSP.

Size Market value of equity on the earnings announcement date in $M. Source: CRSP.
Book-to-Market Book to market ratio at the end of quarter for which earnings are announced.

Source: Compustat.
EPersistence Earnings persistence based on AR(1) regression with at least 4, up to 16 quarterly

earnings. Source: Compustat.
IO Institutional ownership as a fraction of total shares outstanding as of the latest

calendar quarter (13F reporting date) prior to the earnings announcement. Source:
Thomson-Reuters 13F Data, CRSP.

EVOL Standard deviation of seasonally differenced quarterly earnings over the prior 16
(at least 4) quarters. Source: Compustat.

ERepLag Days from quarter-end to earnings announcement. Source: Compustat.
#Estimates Number of analysts making quarterly earnings forecasts. Source: IBES Summary

File.
TURN Average monthly share turnover for the 12 months preceding the earnings announce-

ment. Source: CRSP.
Loss Indicator for negative earnings. Source: Compustat.
#Announcements Number of concurrent earnings announcements. Source: Compustat, IBES.
CAPM Beta CAPM Beta estimated using the CRSP value-weighted market return index for the

250 (at least 60) trading days prior to the earnings announcement. Source: CRSP
IDVOL Idiosyncratic volatility estimated using the CAPM model with the CRSP value-

weighted market return index for the 250 (at least 60) trading days prior to the
earnings announcement. Source: CRSP

DISP Earnings forecast dispersion calculated as standard deviation of analyst forecasts
deflated by mean absolute forecast. Source: IBES Summary File.
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C CAPM tests: data description and robustness checks

The analysis in Section 4.4 starts by merging by GVKEY and DATE the database that contains
firm daily excess returns with the EDGAR search database. The individual returns sample limits
are from January 2002 to December 2020. The EDGAR sample limits are from 2003-02-14 to 2017-
06-30, which dictates the final limits of the merged sample. This initial merged dataset consists of
11,097,305 observations and 4,497 distinct firms.

To identify high/low attention days, we build detrended time series of log search data at the
individual firm level. Then, we add the value of 1 to the EDGAR search data to be able to take
the log on days with zero EDGAR search. (These days commonly occur at the beginning of the
sample; as another option, we have removed the first five years of data, from 2003 to 2007, and the
results are robust to this alternative.) After detrending the log EDGAR search data, we split the
residuals according to their sample median, with high-attention days (1iHighAtt = 1) being the days
whose residuals are above the median.

Before estimating the regressions (40)-(42) for Table 7, we clean up the data as follows:

(i) Using the Thomson Reuters I/B/E/S database, we remove announcements recorded after
4:00 PM on a given date. While one can measure investor attention (EDGAR downloads) on
days when these announcements are released, investors trading on a U.S. exchange will react
to the announcements only on the following trading day. This non-synchronicity prevents us
from properly matching EA days and high-attention days. (The results are robust and even
gain statistical significance if we do not remove these announcements.)

(ii) We remove firms that have less than 20 earnings announcements. This ensures that there are
enough earnings announcement days for the regression (42), which further splits the earnings
announcement days into low/high attention days. (The results are similar if we use a tighter
threshold, e.g., 40.)

(iii) We remove firms that have more than 500 zero EDGAR search values. (The results are similar
if we use a tighter threshold, e.g., 250.)

Additionally, Table 7 results remain robust to alternative divisions of the earnings announce-
ment days in (42). Instead of using breakpoints for high/low attention within the set of EA days
(dependent split), we can base the division on the full sample median (independent split).

The analysis that yields Tables 8-9 and Figure 8 uses return data from 2003-02-14 to 2017-06-30,
which corresponds to the sample limits for the EDGAR data. Finally, the results in Table 9 are
robust to several alternative specifications. The first robustness check concerns our definition of
high-attention days. Rather than using the raw detrended ESV(U) measures, we regress ESV(U)
on VIX and use the residuals instead, with similar results. Second, the results are stronger in panels
A-B and remain confirmatory in panel C after removing the first five years of data, years during
which EDGAR search numbers are relatively lower.
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D Figures and Tables
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Figure 1: Information market equilibrium
This figure depicts the three cases of Theorem 1, (A), (B), and (C). We further split case (B)
in three sub-cases: (B1) Λ1 > 0,Λ2 = Λ3 = 0, in which investors only pay attention to the
announcement of firm 1; (B2) Λ1 > 0,Λ2 > 0,Λ3 = 0, in which investors pay attention to the
announcements of firms 1 and 2 but not 3; (B3) Λ1 > 0,Λ2 > 0,Λ3 > 0, in which investors
pay attention to the announcements of all firms. The calibration used for this illustration
is: γ = 1, b1 = 1.2, b2 = 1, b3 = 0.8, σe1 = σe2 = σe3 = 0.2, σε1 = σε2 = σε3 = 1, and
σx1 = σx2 = σx3 = 1.
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Figure 2: The impact of economic uncertainty on investor attention and ERCs
Panel (a) plots the fractions of attentive investors to each one of the three earnings announce-
ments. Panel (b) plots the earnings response coefficients. In this economy, b1 > b2 > b3,
c = 0.045, and the rest of the calibration is provided in Figure 1.
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Figure 3: The separate impact of an increase in uncertainty and an increase in
investor attention on ERCs
This figure plots the successive changes in ERCs of the announcing firms after an increase
of economic uncertainty from 0.3 to 0.4. The grey bars plot ERCs resulting exclusively from
the increase in U . The hashed bars plot the final ERCs, including also the impact of the
increase in investor attention. In this economy, b1 > b2 > b3, c = 0.045, and the rest of the
calibration is provided in Figure 1.
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Figure 4: The impact of economic uncertainty on investor attention and ERCs
This figure plots the fractions of investors attentive to each earnings announcement (above)
and ERCs (below), as functions of economic uncertainty, for different σea, σεa, and σxa. The
rest of the calibration is provided in Figure 1, and c = 0.045.
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Figure 5: The impact of economic uncertainty on investor attention in an economy
with heterogeneous attention costs
Each panel of the figure plots the fractions of attentive investors as functions of economic
uncertainty, with low-cost investors in panel (a) and high-cost investors in panel (b). In
this economy, b1 > b2 > b3, cl = 0.045, ch = 0.055, the fractions of low-cost and high-cost
investors are of equal size (50%), and the rest of the calibration is provided in Figure 1.
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Figure 6: Overlapping generations economy
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Figure 7: Response of investor attention to changes in uncertainty and ERCs in
an economy with 3000 firms
Panel (a) plots the partial derivative of log Λa with respect to standardized uncertainty Û
when U ∈ [0.1, 0.4], and is thus the theoretical counterpart of the coefficient c1 in (38) and
in Table 3. Panel (b) plots ERCs implied by the theoretical model when U ∈ [0.1, 0.4] and
is thus the theoretical counterpart of the coefficient c1 in (39) and in Table 4. Both panels
consider two alternatives, one with 10 announcers (solid lines), and one with 100 announcers
(dashed lines). See Section 4.3 for a detailed description of the calibration.
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Figure 8: The impact of uncertainty and attention on the CAPM
This figure shows the relationship between the average daily value-weighted excess returns
in basis points (bps) and full-sample betas for ten beta-sorted portfolios (top panels) and 25
portfolios sorted by size/BM (bottom panels). The estimates are presented separately for all
days and days with the VIX t−1 in its top quartile (left panels), detrended aggregated ESV
in its top quartile (middle panels), and detrended aggregate ESVU in its top quartile (right
panels). The lines depict day-specific CAPM relations. The data covers daily excess returns,
VIX historical data, and EDGAR search records from February 2003 to June 2017.
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Table 1: Descriptive statistics
This table reports descriptive statistics for the sample used in analyses of returns around
earnings announcements. Detailed definitions of all variables are available in Appendix B.

Variable Obs. Count Mean Std. Dev. 25% 50% 75%

VIX 234,874 19.626 8.162 13.770 18.030 23.010
ESV 124,660 4.719 1.999 3.367 4.934 6.319
ESVU 124,660 3.664 1.506 2.639 3.912 4.883
ISVI 66,534 4.419 13.315 0.000 0.000 0.000
EARET 234,874 0.001 0.080 -0.033 0.001 0.037
SUE Decile 234,874 5.536 2.705 3.000 6.000 8.000
PreRet 234,851 0.002 0.081 -0.035 -0.001 0.035
Size 234,874 4973.899 13764.427 282.266 854.312 2980.429
Book-to-Market 234,727 0.534 0.382 0.274 0.458 0.701
EPersistence 234,206 0.226 0.398 -0.040 0.180 0.500
IO 225,437 0.633 2.288 0.430 0.666 0.842
EVOL 234,232 0.822 2.115 0.116 0.272 0.654
ERepLag 234,874 30.765 13.609 22.000 28.000 37.000
#Estimates 234,874 7.799 6.573 3.000 6.000 11.000
TURN 234,874 17.446 17.605 6.935 12.826 22.120
Loss 234,874 0.194 0.396 0.000 0.000 0.000
#Announcements 234,874 150.476 92.544 73.000 137.000 221.000
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Table 3: Investor attention and economic uncertainty.
This table presents results of regressions of announcement-window EDGAR and (investor-
driven) Google searches on prior day’s closing value of VIX and controls (Eq. 38). All
variables are standardized to be mean-zero and unit-variance. Detailed definitions of all
variables are available in Appendix B. Standard errors for the coefficients are clustered by
date. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10% levels,
respectively.

Dep. Var. ESV ESVU ISVI
(1) (2) (3)

VIX 0.030*** 0.034*** 0.018*
(0.005) (0.005) (0.010)

lag(Dep. Var.) 0.455*** 0.535*** 0.238***
(0.013) (0.013) (0.008)

SUE Decile 0.005*** 0.005*** 0.009**
(0.001) (0.001) (0.004)

abs(SUE ) Decile 0.005 0.011*** 0.015*
(0.003) (0.003) (0.008)

Size 0.059*** 0.059*** 0.086***
(0.002) (0.003) (0.005)

Book-to-Market -0.008*** -0.011*** -0.014***
(0.001) (0.001) (0.004)

EPersistence -0.016*** -0.013*** 0.005
(0.002) (0.002) (0.004)

IO 0.002 0.001 0.107***
(0.001) (0.001) (0.034)

EVOL 0.006*** 0.007*** 0.009*
(0.001) (0.001) (0.005)

ERepLag 0.025*** 0.016*** 0.010**
(0.006) (0.006) (0.005)

#Estimates 0.045*** 0.045*** 0.034***
(0.003) (0.003) (0.005)

TURN 0.027*** 0.028*** 0.055***
(0.002) (0.002) (0.006)

Loss -0.001 0.004*** 0.002
(0.001) (0.001) (0.004)

#Announcements -0.024** -0.010 -0.019***
(0.011) (0.012) (0.005)

Year FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Obs. Count 119,341 119,341 62,757
R2 0.803 0.817 0.122
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Table 4: ERCs, economic uncertainty and investor attention
This table presents results of regressions of earnings announcement returns (EARET ) on
earnings surprise deciles interacted with the VIX (column 1), with ESVU (column 2), and
with both the VIX and ESVU (column 3) (Eq. 39). All variables are standardized to be
mean-zero and unit-variance. Control variables include: PreRet, Size, Book-to-Market, EPer-
sistence, IO, EVOL, ERepLag, #Estimates, Turn, Loss, #Announcements, year indicators,
day-of-week indicators, and each of these interacted with SUE Decile. Detailed definitions of
all variables are available in Appendix B. Standard errors for the coefficients are clustered by
date. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10% levels,
respectively.

Dep. Var. = EARET
(1) (2) (3)

VIX *SUE Decile 0.015*** 0.010
(0.005) (0.007)

ESVU *SUE Decile 0.028*** 0.027***
(0.007) (0.007)

SUE Decile 0.204*** 0.295*** 0.297***
(0.012) (0.018) (0.018)

VIX -0.007 -0.007
(0.005) (0.006)

ESVU -0.018*** -0.018***
(0.006) (0.006)

lag(ESVU ) -0.001 -0.001
(0.007) (0.007)

lag(ESVU )*SUE Decile -0.011 -0.010
(0.007) (0.007)

PreRet -0.075*** -0.080*** -0.080***
(0.004) (0.006) (0.006)

PreRet*SUE Decile -0.012*** -0.012** -0.011**
(0.003) (0.005) (0.005)

Controls Yes Yes Yes
Controls*SUE Decile Yes Yes Yes
Year FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
Obs. Count 224,675 119,332 119,332
R2 0.111 0.143 0.143
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Table 7: Firm betas and investor attention on earnings announcement days
This table reports average β coefficients across firms in three regressions that examine the
effects of investor attention and earnings announcements on excess returns:

rei,t = αiOther + αi∆EA 1iEA +βiOtherr
e
M,t + βi∆EA(1iEA×reM,t) + εi,t (i)

rei,t = αiOther + αi∆A 1iHighAtt +βiOtherr
e
M,t + βi∆A(1iHighAtt×reM,t) + εi,t (ii)

rei,t = αiOther + αlow,i∆EA 1low,i
EA +αhigh,i∆EA 1high,i

EA

= + βiOtherr
e
M,t + βlow,i∆EA(1low,i

EA ×r
e
M,t) + βhigh,i∆EA (1high,i

EA ×reM,t) + εi,t, (iii)

where 1iEA equals 1 on days when firm i announces earnings; 1iHighAtt equals 1 on days when
investor attention to firm i (the time-detrended ESV(U) of firm i) is above the full-sample
median; 1high,i

EA equals 1 when attention to firm i is above its median computed within the set
of EA days; and 1low,i

EA equals 1 when attention to firm i is below its median computed within
the set of EA days; reM,t is the excess return on the market; and rei,t is firm i’s excess return.
The β coefficients are winsorized at the first and 99th percentiles to mitigate the influence
of outliers. The analysis covers daily excess returns from February 2003 to June 2017, with
standard errors in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided
1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5)

Regression Eq.: Eq. (i) Eq. (ii) Eq. (ii) Eq. (iii) Eq. (iii)
Attention measure: ESV ESVU ESV ESVU

Average βOther 1.027∗∗∗ 1.017∗∗∗ 1.027∗∗∗ 1.037∗∗∗ 1.037∗∗∗

(0.011) (0.012) (0.012) (0.012) (0.012)
Average β∆EA 0.088∗∗∗

(0.029)
Average β∆A 0.042∗∗∗ 0.019∗∗∗

(0.004) (0.004)
Average βlow∆EA 0.062 0.040

(0.046) (0.048)

Average βhigh∆EA 0.141∗∗∗ 0.123∗∗∗

(0.047) (0.047)

Average Adj. R2 0.251 0.252 0.252 0.258 0.258
Nb. firms 1,368 1,260 1,260 1,260 1,260
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Table 8: Portfolio betas and investor attention, 10 beta-sorted portfolios
This table reports the β coefficients for 10 beta-sorted portfolios in a regression of portfolio
excess returns, rej,t, on market excess returns, reM,t, a variable that measures aggregate atten-

tion to the portfolio’s constituent firms, 1̄
j
HighAtt,t, and an interaction term between market

excess returns and the aggregate attention to the portfolio’s constituent firms:

rej,t = αjOther + αj∆A1̄
j
HighAtt,t + βjOtherr

e
M,t + βj∆A(1̄

j
HighAtt,t × reM,t) + εj,t.

The portfolio attention variable 1̄
j
HighAtt,t is calculated as the within-portfolio average of indi-

vidual dummy variables 1high,i
EA (1high,i

EA equals 1 when attention to firm i is above its median).
Panel A (Panel B) reports results using the investor attention measure ESV (ESVU ). The
analysis covers daily excess returns from February 2003 to June 2017 for firms whose EDGAR
search data is available, with standard errors in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the two-sided 1%, 5%, and 10% levels, respectively.

Panel A: 10 beta-sorted portfolios and high ESV -measured attention

Low (2) (3) (4) (5) (6) (7) (8) (9) High

βOther 0.218∗∗∗ 0.570∗∗∗ 0.731∗∗∗ 0.793∗∗∗ 1.022∗∗∗ 1.010∗∗∗ 1.161∗∗∗ 1.219∗∗∗ 1.326∗∗∗ 1.524∗∗∗

(0.015) (0.016) (0.014) (0.011) (0.011) (0.011) (0.012) (0.014) (0.021) (0.031)
β∆A 0.088∗∗∗ -0.060∗∗ -0.064∗∗ 0.039∗ -0.119∗∗∗ 0.156∗∗∗ 0.077∗∗∗ 0.164∗∗∗ 0.203∗∗∗ 0.332∗∗∗

(0.028) (0.030) (0.026) (0.020) (0.021) (0.021) (0.023) (0.026) (0.038) (0.055)

R2 0.330 0.665 0.818 0.909 0.927 0.941 0.936 0.928 0.890 0.842

Panel B: 10 beta-sorted portfolios and high ESVU -measured attention

Low (2) (3) (4) (5) (6) (7) (8) (9) High

βOther 0.199∗∗∗ 0.517∗∗∗ 0.696∗∗∗ 0.785∗∗∗ 0.992∗∗∗ 1.012∗∗∗ 1.188∗∗∗ 1.260∗∗∗ 1.384∗∗∗ 1.601∗∗∗

(0.014) (0.015) (0.013) (0.010) (0.011) (0.011) (0.012) (0.014) (0.020) (0.030)
β∆A 0.135∗∗∗ 0.055∗ 0.009 0.057∗∗∗ -0.061∗∗∗ 0.161∗∗∗ 0.023 0.085∗∗∗ 0.091∗∗ 0.187∗∗∗

(0.029) (0.031) (0.026) (0.020) (0.021) (0.022) (0.024) (0.027) (0.039) (0.056)

R2 0.332 0.665 0.817 0.909 0.927 0.941 0.936 0.927 0.889 0.841
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Table 9: CAPM, economic uncertainty, and investor attention
This table reports regression results for excess returns on 10 value-weighted beta-sorted port-
folios of firms whose EDGAR search data is available (Panel A), 10 value-weighted beta-sorted
portfolios of all firms (Panel B), and 25 value-weighted size/BM-sorted portfolios of all firms
(Panel C). The regressions examine the relationship between portfolio excess returns and the
market return, and are computed separately for days with various thresholds of VIX t−1 and
detrended aggregate investor attention measures. The table also reports average market re-
turns for each type of day (row ‘Avg. Re

M ’), as well as the t-statistic of the difference between
the CAPM slope estimate (row ‘β’) and the estimated market excess return. Estimates are
in basis points per day. The analysis covers daily excess returns from February 2003 to June
2017, with standard errors in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at
the two-sided 1%, 5%, and 10% levels, respectively.

Panel A: 10 beta-sorted portfolios (Only firms whose EDGAR search data is available)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

All days VIX ESV ESVU VIX> 50% VIX> 50%
> 50% > 75% > 50% > 75% > 50% > 75% ESV> 50% ESVU> 50%

Intercept 1.800 3.424 0.773 0.292 2.339 -0.538 -1.674 2.070 0.149
(1.057) (2.007) (3.127) (1.159) (1.739) (0.972) (1.428) (1.780) (1.585)

β 1.686 2.849 4.671 3.944∗∗∗ 0.827 3.769∗∗∗ 6.357∗∗∗ 5.809∗∗∗ 5.027∗∗∗

(0.979) (1.829) (2.793) (1.050) (1.589) (0.891) (1.306) (1.580) (1.423)

Avg. Re
M 4.137 6.932 6.171 5.136 4.168 3.908 5.736 8.579 5.410

Slope test [-2.505]∗∗ [-2.232]∗∗ [-0.537] [-1.136] [-2.103]∗∗ [-0.155] [0.475] [-1.753]∗ [-0.269]

R-Square 0.271 0.233 0.259 0.638 0.033 0.691 0.748 0.628 0.609
Nb. days 3617 1810 905 1808 903 1808 903 995 902

Panel B: 10 beta-sorted portfolios (All firms)

Intercept 2.767∗∗∗ 1.708∗ 1.521 1.171 1.329 -0.357 -1.156 -0.131 -2.304
(0.625) (0.795) (1.257) (0.773) (0.741) (0.798) (1.428) (0.763) (1.333)

β 1.873∗∗ 6.279∗∗∗ 6.202∗∗∗ 4.757∗∗∗ 4.048∗∗∗ 4.950∗∗∗ 7.732∗∗∗ 9.505∗∗∗ 8.324∗∗∗

(0.566) (0.718) (1.127) (0.688) (0.672) (0.719) (1.305) (0.673) (1.192)

Avg. Re
M 4.191 7.037 6.329 5.136 4.168 3.908 5.736 8.579 5.410

Slope test [-4.097]∗∗∗ [-1.056] [-0.113] [-0.551] [-0.179] [1.449] [1.530] [1.377] [2.444]∗∗

R-Square 0.578 0.905 0.791 0.857 0.819 0.855 0.814 0.961 0.859
Nb. days 3618 1811 905 1808 903 1808 903 995 902

Panel C: 25 size/BM-sorted portfolios

Intercept 3.130∗ 8.631∗∗∗ 5.301 1.355 0.202 -1.540 -3.034 7.375∗∗ 3.247
(1.735) (2.720) (3.722) (2.200) (3.863) (2.385) (3.192) (3.334) (3.234)

β 1.671 -0.460 1.013 4.436∗∗ 5.504 6.181∗∗∗ 10.044∗∗∗ 2.817 3.539
(1.538) (2.432) (3.327) (1.902) (3.323) (2.117) (2.799) (2.889) (2.891)

Avg. Re
M 4.191 7.037 6.329 5.136 4.168 3.908 5.736 8.579 5.410

Slope test [-1.638] [-3.083]∗∗∗ [-1.598] [-0.368] [0.402] [1.074] [1.539] [-1.994]∗∗ [-0.647]

R-Square 0.049 0.002 0.004 0.191 0.107 0.270 0.359 0.040 0.061
Nb. days 3618 1811 905 1808 903 1808 903 995 902
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E Internet Appendix

Table IA.1: ERCs, economic uncertainty and investor attention (raw SUE, win-
sorized)
This table presents results of regressions of earnings announcement returns (EARET ) on
winsorized analyst forecast based earnings surprise (a winsorized version of the unranked
SUE ) interacted with the VIX (column a), with ESVU (column b), and with both the VIX
and ESVU (column c) (Eq. 39). All variables are standardized to be mean-zero and unit-
variance. Control variables include: PreRet, Size, Book-to-Market, EPersistence, IO, EVOL,
ERepLag, #Estimates, Turn, Loss, #Announcements, year indicators, day-of-week indica-
tors, and each of these interacted with SUE Decile. Detailed definitions of all variables are
available in Appendix B. Standard errors for the coefficients are clustered by date. ∗∗∗, ∗∗,
and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10% levels, respectively.

Dep. Var. = EARET
(1) (2) (3)

VIX *SUE Decile 0.002 -0.001
(0.005) (0.006)

ESVU *SUE Decile 0.030*** 0.030***
(0.010) (0.010)

SUE Decile 0.273*** 0.394*** 0.393***
(0.017) (0.028) (0.028)

VIX 0.000 0.002
(0.004) (0.006)

ESVU -0.011* -0.011*
(0.007) (0.006)

lag(ESVU ) -0.000 0.000
(0.007) (0.007)

lag(ESVU )*SUE Decile -0.028*** -0.028***
(0.010) (0.010)

PreRet -0.070*** -0.074*** -0.074***
(0.004) (0.006) (0.006)

PreRet*SUE Decile 0.000 -0.002 -0.002
(0.003) (0.005) (0.005)

Controls Yes Yes Yes
Controls*SUE Decile Yes Yes Yes
Date-clustered SE Yes Yes Yes
Year and Day-of-week FE Yes Yes Yes
N 224,675 119,332 119,332
R-Square 0.082 0.107 0.107
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Table IA.2: ERCs, economic uncertainty and investor attention (no bottom SUE
decile)
This table presents results of regressions of earnings announcement returns (EARET ) on
earnings surprise deciles interacted with the VIX (column a), with ESVU (column b), and
with both the VIX and ESVU (column c) (Eq. 39). The sample is limited to earnings an-
nouncements NOT in the bottom SUE decile. All variables are standardized to be mean-zero
and unit-variance. Control variables include: PreRet, Size, Book-to-Market, EPersistence, IO,
EVOL, ERepLag, #Estimates, Turn, Loss, #Announcements, year indicators, day-of-week in-
dicators, and each of these interacted with SUE Decile. Detailed definitions of all variables
are available in Appendix B. Standard errors for the coefficients are clustered by date. ∗∗∗, ∗∗,
and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10% levels, respectively.

Dep. Var. = EARET
(1) (2) (3)

VIX *SUE Decile 0.011** 0.006
(0.005) (0.007)

ESVU *SUE Decile 0.027*** 0.026***
(0.007) (0.007)

SUE Decile 0.197*** 0.302*** 0.303***
(0.013) (0.019) (0.019)

VIX -0.005 -0.005
(0.004) (0.006)

ESVU -0.018*** -0.017***
(0.006) (0.006)

lag(ESVU ) -0.002 -0.003
(0.007) (0.007)

lag(ESVU )*SUE Decile -0.007 -0.007
(0.008) (0.008)

PreRet -0.077*** -0.086*** -0.087***
(0.004) (0.006) (0.006)

PreRet*SUE Decile -0.011*** -0.003 -0.003
(0.003) (0.006) (0.006)

Controls Yes Yes Yes
Controls*SUE Decile Yes Yes Yes
Date-clustered SE Yes Yes Yes
Year and Day-of-week FE Yes Yes Yes
N 208,894 110,988 110,988
R-Square 0.102 0.132 0.132
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