
Schumpeterian Competition in a Lucas
Economy

Daniel Andrei∗ Bruce I. Carlin†

January 17, 2023

Abstract

We model a rent-seeking game where agents experiment with a new technology
and compete for claims to a consumption stream. We characterize how creative
destruction affects risk, wealth, and asset prices. Competition not only imposes ex-
cessive disruption risk on existing assets and higher technological uncertainty, it also
increases the wealth duration (the weighted-average maturity of wealth). Because
of hedging motives, a complementarity between wealth duration and technological
uncertainty decreases systematic risk. If competition is sufficiently intense, a neg-
ative risk premium may arise. The model generates price paths consistent with
boom-bust patterns and transient episodes of negative expected excess returns. We
show that Schumpeterian competition may worsen income inequality.
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1 Introduction

We characterize the effect of Schumpeterian competition on the aggregate consumption

stream in a standard Lucas endowment economy. When paradigm shifts occur, agents

fight for market share, which is a claim to both current and future cash flows, and includes

real options such as the option to expand, flexibility, and synergies. We investigate the

consequences that this type of competition has for the structure of the consumption

stream, risk in the economy, and asset pricing dynamics.

Surely, aggregate consumption changes when innovation arises and agents compete

for monopoly rents. The relationship between creative destruction and rent-seeking has

been studied in a variety of contexts (e.g., Reinganum, 1983; Aghion and Howitt, 1992;

Baye and Hoppe, 2003).1 Though, it still remains unclear whether creative destruction

is socially beneficial (e.g., Witt, 1996; Aghion, Akcigit, Bergeaud, Blundell, and Hémous,

2015; Komlos, 2014), and whether it worsens income inequality (e.g., Jones and Kim,

2018; Gabaix, Lasry, Lions, and Moll, 2016).

Beyond the potential gains that innovation promises, Schumpeter also stressed that

creative destruction “takes considerable time in revealing its true features and ultimate

effects” (Schumpeter, 1942). Some of this risk is due to the eventual fate of the innovation

(technological uncertainty). But, creative destruction may also involve spillovers and

irreversible changes in systematic risk (Pastor and Veronesi, 2009) because the fate of

existing assets becomes uncertain: some assets face disruption risk, while others enjoy

new growth options and complementarities. So, a paradigm shift may indeed change

both the expected value and variance of future consumption.

To fix ideas, consider the recent widespread adoption of Zoom Video Communications.

This not only displaced technologies like Skype and Face Time, it impacted many other

dimensions of the economy. Remote meetings have made firms more efficient in connecting

global employees and they have improved the ability of researchers from different academic

institutions to conduct research together. At the same time, the future of corporate real

estate has become more uncertain as businesses are re-assessing their needs for office

space. Residential real estate has become more risky as well: people are migrating away

1See Kamien and Schwartz (1975) for an excellent survey of the literature, and Kamien and Schwartz
(1982) and Nelson and Winter (2009) for textbook treatments. See also Swan (1970), Loury (1979), Futia
(1980), Fudenberg and Tirole (1984), Reinganum (1985), D’Aspremont and Jacquemin (1988),Reinganum
(1989), Klepper (1996), Witt (1996), Chung (1996), Aghion, Bloom, Blundell, Griffith, and Howitt (2005),
Carree and Thurik (2005), Boldrin and Levine (2008), Aghion and Griffith (2008), Komlos (2014),Bam-
poky, Prieger, Blanco, and Liu (2016), Acemoglu and Restrepo (2020), Akcigit, Grigsby, and Nicholas
(2017), and Jones and Kim (2018).
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from city centers because they are able to work remotely. The evolution of this paradigm

shift has also likely affected travel, hotel usage, the census of state populations (which

have political implications), and labor markets themselves. So, while the direct impact

of this creative destruction is on obvious substitutes, spillovers make many other existing

assets more uncertain as well.2

We study a Tullock contest (Tullock, 1980) in which agents make simultaneous choices

about how much to experiment with a new technology. Agents compete for market share,

which is a proportion of an aggregate consumption stream that endogenously results

from innovation (Hirshleifer, 1989). In our model, however, creative destruction by the

agents has two effects on the aggregate consumption stream: it changes the growth rate

of consumption—hopefully for the better—and it amplifies the magnitude of its diffusion.

The former characterizes technological uncertainty and the latter captures disruption risk.

We solve for a first-best benchmark. The socially optimal amount of experimenta-

tion results from the classic tradeoff between maximizing the expected value of future

consumption and minimizing its future volatility. Naturally, experimentation is higher

with less technological uncertainty, a higher expected benefit, lower risk aversion, and less

spillover to existing assets through disruption risk.

Rent-seeking competition fundamentally alters this tradeoff and catalyzes inefficient

investments. When agents fight for a slice of the pie, aggregate experimentation is higher

than the social optimum and grows monotonically with competition. Moreover, if the ex-

perimental good offers some degree of technological diversification (Koren and Tenreyro,

2013), then the agents have higher incentives to over-invest, which again increases exper-

imentation. But, the agents do not internalize their effect on risk. As such, even though

excessive experimentation allows for faster learning about the new technology, it amplifies

the impact of technological uncertainty and causes more disruption of existing assets.

Disruption risk permanently increases both the equilibrium stock market volatility and

the risk premium, and competition amplifies this. However, technological uncertainty has

a negative and dynamic effect on volatility and the risk premium. This effect arises in

general equilibrium because of a hedging demand from agents, who insulate themselves

against the adverse effect of technological uncertainty.

2Other examples include: the rise of ride-sharing companies such as Uber and Lyft, which have
disrupted the traditional taxi industry; the growth of e-commerce and online retail companies such as
Amazon, which have led to the decline of brick-and-mortar retail stores; the emergence of renewable
energy sources such as solar and wind power, which have disrupted the traditional fossil fuel industry;
the advent of streaming services such as Netflix and Spotify, which have disrupted the traditional cable
and music industries; and the rise of social media platforms such as Facebook and Instagram, which have
disrupted the traditional advertising industry.

2



From the model, we learn that experimentation affects systematic risk by changing

the term structure of wealth. The wealth duration, which measures the weighted average

maturity of the price of a claim to aggregate consumption, describes the risks that agents

bear based on the timing of consumption from the dividend stream. Experimentation

tends to increase wealth duration, and this amplifies the effect of technological uncer-

tainty and increases agents’ hedging motives. This complementarity may even cause the

risk premium to be negative. But this effect is transient: as learning progresses and tech-

nological uncertainty drops, both systematic risk and the risk premium rise, which is a

result of persistent disruption risk.

The price-dividend ratio increases with experimentation but decreases as uncertainty

about the new technology is resolved through learning. Higher rent-seeking and increased

competition make the occurrence of boom-bust episodes more likely, which does not occur

in the social optimum. To test this empirically, we discretize our continuous-time setup,

run simulations of the model, and conduct predictive regressions. Our results show that

high competition causes the price-dividend ratio to negatively predict future returns.

This not only lowers predicted expected excess returns, but it may also result in negative

expected excess returns when competition is particularly intense. This pattern aligns with

the empirical characterization of booms and busts in Hoberg and Phillips (2020) and the

theoretical implications of DeMarzo, Kaniel, and Kremer (2007).

We investigate extensions of the model, several of which amplify our baseline results.

For instance, when the new technology is subject to obsolescence (Aghion and Howitt,

1992), Schumpeterian competition leads to a higher degree of over-experimentation than

in our baseline setup. Additionally, we expand the representative agent model to include

the option for agents to change their experimentation over time. This allows agents

to abandon a technology if it is determined to be non-value enhancing. This option

for abandonment increases experimentation, which in turn increases risk as agents may

experiment more knowing that they have the option to back off.

To determine the effect of Schumpeterian competition on residual claimants in the

economy, we incorporate passive agents into our model. These agents do not participate

in competition for market share, but instead are residual claimants of the consumption

stream. Our findings indicate that the welfare of passive agents decreases as competition

increases. Not only do they receive a smaller portion of the consumption stream due to

over-experimentation, but the aggregate value of the consumption stream also decreases.

Thus, our model suggests that creative destruction may exacerbate income inequality,

particularly with higher levels of competition (e.g., Jones and Kim, 2018). Finally, our
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analysis of a setting with recursive preferences reveals that learning by doing endogenously

creates long-run risk (Bansal and Yaron, 2004), aligning with a growing literature that

provides equilibrium foundations of long-run risk through innovation and R&D (Kung

and Schmid, 2015; Kung, 2015).

Related Literature Our paper is closest to Pastor and Veronesi (2009). In their model,

learning about the new technology takes place with an infinitesimally small consumption

stream, so the new technology does not perturb the rest of the economy. Once the

new technology becomes sufficiently promising, there is an instantaneous transition in

which the new consumption stream displaces the status quo. Prices rise and then fall as

risk changes from idiosyncratic to systematic. Our work complements theirs. First, we

consider that learning by doing (Arrow, 1962) does disrupt the status quo and there is

an observer effect. Second, because of our game-theoretic framework, we can consider the

effect of competition on risk, wealth, and prices. Third, both technological uncertainty

and systematic risk evolve continuously, so that we can evaluate their effects over the

long term. Last, because we model game-theoretic claims to a consumption stream, we

can show how the term structure of those claims changes and affects volatility and risk

premia.

In a related paper, DeMarzo et al. (2007) develop a model of relative wealth concerns

where risky technologies attract excessive investment that can be largely unprofitable,

which they argue is consistent with a real investment bubble. In our setting with Schum-

peterian competition, excess investment arises in a rent-seeking contest. So, we extend

the analysis in DeMarzo et al. (2007) on two dimensions. First, we establish a novel link

between excessive real investment and asset price bubbles. As over-investment magnifies

technological uncertainty, it leads to price paths consistent with boom-bust patterns and

transient episodes of negative expected excess returns. Second, our model shows how

over-investment may worsen wealth inequality and expose agents who do not actively

invest in the new technology to excessive risks.

Our study builds on the seminal contribution of Tullock (1980) and a number of papers

that have explored various aspects of rent-seeking competitions.3 We contribute to this

literature by considering a game in which the aggregate prize changes non-linearly with

effort. This is a key aspect of our analysis, whose outcome is that agents over-experiment

despite the fact that the aggregate prize decreases, because their incentives are mainly

3See, among many others, D’Aspremont and Jacquemin (1988); Hirshleifer (1989); Alexeev and Leitzel
(1996); Chung (1996); Baye and Hoppe (2003); Chowdhury and Sheremeta (2011).
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focused on their own share of the prize. Furthermore, because we place the Tullock contest

into a general equilibrium asset pricing setting with heterogeneous agents, we can consider

the effect of competition on systematic risk, social welfare, and wealth inequality.

Our model relates to stochastic variants of Schumpeterian growth models (Barlevy,

2007; Kung, 2015; Kung and Schmid, 2015), which provide microfoundations for the way

innovation impacts economic growth and its fluctuations. Our framework builds on these

microfoundations and analyzes the effect of competition and technological uncertainty on

risk and asset prices. The long term effects of the model provide a new perspective on how

competition may drive secular trends related to innovation and risk premia. Recent studies

have attributed slumping investment and innovation (Gutiérrez and Philippon, 2018)

and rising risk premia in equity markets (Corhay, Kung, and Schmid, 2020) to declining

competition, an observation that aligns well with the predictions of our model. Finally,

through its effect on duration and risk, experimentation changes the term structure of risk

and implies lower returns for long-duration assets, consistent with a recent literature that

studies the risk premia of equity claims with different maturities (Lettau and Wachter,

2007, 2011; Weber, 2018; Van Binsbergen, 2020; Gonçalves, 2021).

The rest of the paper proceeds as follows. Section 2 poses the model, characterizes

learning and socially optimal experimentation, and contrasts the equilibrium behavior of

competitive agents to the social optimum. Section 3 characterizes the risks of Schumpete-

rian competition and its implications for asset prices and return predictability. Section 4

discusses various extensions of the model. Section 5 concludes. All proofs and additional

calculations are in the Appendix.

2 Experimentation and Competition

The continuous-time model of this section builds on a pure exchange economy (Lucas,

1978) whose growth is disrupted by the advent of a new technology. We study agents’

decisions to deploy the new technology and reap the associated rewards. For expositional

purposes, we keep the model as simple as possible. We discuss the model’s assumptions

in Section 4, where we analyze several extensions and alternative specifications.

Consider an economy defined over a continuous-time finite horizon [0, T ]. In the status

quo, the aggregate output in the economy follows the dynamic process

dδSt
δSt

= f̄dt+ σdW S
t , (1)
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where f̄ and σ are known constants and W S
t is a one-dimensional standard Brownian

motion. For now, we assume that the economy is populated by one representative agent.

Later, we study an economy with multiple agents who compete for shares of the aggregate

consumption stream. We also discuss the finite horizon assumption in Section 4.1, where

we consider an extension of the model to the infinite horizon case.

The agent has isoelastic preferences over lifetime consumption,

E0

[∫ T

0

e−ρt
c1−γ
t

1− γ
dt

]
, (2)

where γ is the coefficient of relative risk aversion, ρ is the time discount parameter, and

E0[·] denotes the expectation under the filtration of the agent, to be defined below.

At time t = 0, the agent has the opportunity to allocate resources X ≥ 0 to an

experimental asset. This new asset is sufficiently important to affect the entire economy

and to change aggregate consumption. The asset employs a new technology that has

never been implemented on a large scale before. Its output follows the dynamic process

dδEt
δEt

=

(
g − k2σ2

2
X

)
dt+ kσϕdW S

t + kσ
√

1− ϕ2dWE
t . (3)

The parameter g in the drift of the process (3) is unknown at time t = 0 (all the other

parameters are known). We refer to the uncertainty about g as technological uncertainty.

The drift of δEt increases in g and decreases linearly with X; that is, the expected output

growth of the experimental asset has decreasing returns to scale, an assumption that will

simplify our analysis, and that is likely to dampen our main results.

According to the diffusion terms in the output process of the experimental good,

the new technology experiences the same shocks as the status quo, dW S
t , but also new

shocks generated by the independent Brownian motion WE
t . The parameter ϕ ∈ [−1, 1]

regulates the exposure of the new technology to dWE
t . If ϕ < 1, the shock dWE

t provides

technological diversification benefits (Koren and Tenreyro, 2013). Finally, the parameter

k > 0 controls the output volatility of the new technology.

The agent commits to an experimentation level X that remains constant thereafter. As

such, the agent chooses how far to open Pandora’s box and lives with the consequences.4

Allocating resources to the new asset has an opportunity cost: if X > 0, the consumption

4We discuss the case in which the agent can dynamically change experimentation in Section 4.3.
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stream that results from the old asset grows at a slower pace:

dδSt
δSt

=
(
f̄ − c

2
X2
)
dt+ σdW S

t . (4)

where c > 0. The cost parameter c in our model relates to the concept of creative de-

struction. For instance, in the endogenous growth model pioneered by Aghion and Howitt

(1992), innovation is the driving force of growth, but it also poses a threat to the rents

generated by current research, similar to our model, where investment in new technology

redirects resources away from the existing asset, leading to the destruction of its future

rents. Additionally, c can also be understood as the displacement cost that arises from

transferring resources away from existing assets (Kogan, Papanikolaou, and Stoffman,

2020). Finally, this opportunity cost specification is both mathematically convenient and

economically relevant, as argued by Lucas (1987) and Barlevy (2004), as reducing the

growth rate of consumption entails large welfare costs.5

If X = 0, the economy remains in the status quo and only δSt is consumed. When X >

0, the experimental asset produces a new consumer good. Thus, the agent’s decision to

allocate resources to a new asset and create a new consumer good embodies Schumpeter’s

“fundamental impulse that sets and keeps the capitalist engine in motion” (1942, p. 83):

it yields a new variety in the aggregate consumption basket, which we define as

δt ≡ δSt
(
δEt
)X

. (5)

In the new economy, the agent consumes a composite of the status-quo and experimen-

tal goods. Replacing the aggregate consumption (5) in (2) yields a Cobb-Douglas/isoelastic

specification commonly encountered in the international economics and finance literature6,

where X is interpreted as a taste parameter. A similar interpretation can be made here.

Referring to the aggregate consumption basket δt as the numéraire and normalizing its

price to unity, optimal intratemporal choice (within period and across goods) implies that

X/(1+X) is the agent’s expenditure share on the experimental good (see Appendix A.1).

In other words, maximizing utility by choosing the amount of experimentation X is equiv-

5Our results go through even in the case c = 0. As we will elaborate below, experimentation itself
generates costs by raising the future variance of aggregate consumption, which guarantees a solution to
the agent’s problem even when c = 0.

6See Helpman and Razin (1978, p. 101), Cole and Obstfeld (1991, p. 7), Zapatero (1995, p. 790),
Pavlova and Rigobon (2007, p. 1144). For analytical convenience, the sum of the exponents in (5) is 1+X
rather than being normalized to unity. Our results are preserved if we specify instead δt ≡ (δSt )1−X(δEt )X .
However, this alternative would impose the constraint X ≤ 1 and would further insert a non linearity in
(6) arising from the cost cX2/2 that experimentation imposes on the existing asset in (4).
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alent with maximizing utility by choosing the expenditure share X/(1 +X).7

There are numerous real-life examples of new technologies capturing a significant share

of consumer expenditure. One notable example is the advent of smartphones, particularly

those produced by Apple, which replaced more traditional mobile phones such as Nokia

and BlackBerry. Another example is Tesla, which has captured a significant share of the

car market, eroding the rents generated by sales of gas-powered cars. In our model, these

effects on consumption shares are driven by the agent’s choice of X.

The Cobb-Douglas specification (5) considerably simplifies the dynamics of aggregate

consumption δt. Formally, Itô’s lemma implies:

dδt
δt

=
(
f̄ + βX − c

2
X2
)
dt+ σ

√
1 + k2X2 + 2kϕXdWt, (6)

where the parameter β is defined as

β ≡ g +
1

2
(2ϕ− k)kσ2, (7)

and Wt is a Brownian motion correlated with both W S
t and WE

t (it is possible to keep

track of W S
t and WE

t separately, but not necessary in what follows).

Investment in the new technology simultaneously affects the drift and diffusion co-

efficients of aggregate consumption growth. In the new drift coefficient, which becomes

(f̄ + βX − cX2/2), the parameter β ∈ R is unknown and encompasses that innovation

can both fuel growth when β > cX/2 and also be destructive when β < cX/2. Our new

economy is thus one in which growth is endogenous and driven by technological change

(Aghion and Howitt, 1992; Garleanu, Panageas, and Yu, 2012; Kung and Schmid, 2015;

Kung, 2015). Importantly, in our model the true value of β is unknown. Thus, the agent

does not exclude the possibility that the technology may have negative aggregate effects

(Acemoglu and Restrepo, 2020).

Investment in the new technology yields the diffusion coefficient σ
√

1 + k2X2 + 2kϕX.

This captures the disruption risk that the new asset imposes on the economy. Unlike in

Pastor and Veronesi (2009), here the new technology is sufficiently developed so that its

adoption contributes to aggregate fluctuations, although it also provides diversification

benefits when ϕ < 1. The literature recognizes that innovation creates systematic risk

7A small quantity δE would imply a large initial price for the experimental asset (Appendix A.1).
However, good prices do not generally play a role with a Cobb-Douglas specification. Considering a
constant elasticity of substitution (CES) function would have the potential benefit of giving good prices
a role in the game, a matter which we leave for future research.
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(Gârleanu, Kogan, and Panageas, 2012; Kung and Schmid, 2015). Our focus will be on

the effect of competition on the risks created by innovation.

In summary, the agent’s selection of the level of experimentation, represented by the

variable X, has a multifaceted impact on the future trajectory of the economy. While it

may facilitate faster economic growth due to the unknown parameter β, it also engenders

increased output volatility, as denoted by the parameter k, and diverts resources from

existing assets, as represented by the parameter c. These various roles of X align our

model with stochastic Schumpeterian growth models (e.g., Kung, 2015; Kung and Schmid,

2015), which provide microeconomic foundations for how innovation affects both the drift

and diffusion components of aggregate output. Our model captures these effects in a

simplified form and concentrates on the agent’s experimentation trade-off. The agent

maximizes the welfare gains of accelerated growth, taking into account the welfare losses

brought about by more significant aggregate fluctuations, a trade-off that has also been

discussed in previous literature such as in Barlevy (2004, 2007). However, it is essential

to note that our model also features an additional source of risk, which is not immediately

apparent from (6). This source of risk is the technological uncertainty surrounding the

actual value of β. Characterizing the agent’s learning process is crucial in comprehending

how technological uncertainty influences this trade-off.

Learning In this economy learning occurs by doing : the agent can evaluate the benefits

of the new technology only if it is deployed in the real economy and X > 0.8 This implies

that the agent learns via a field experiment, rather than through an isolated, laboratory

experiment. What we have in mind is that a controlled laboratory setting where economic

agents learn about a new technology by implementing it at an infinitesimally small scale

(Pastor and Veronesi, 2009) is not sufficient to assess the efficacy of innovation (e.g., a

vaccine; ride-sharing technology).

Before proceeding, it should be noted that the unknown aspect of the new technology

in our model is its drift. This assumption seems somewhat restrictive, since the riskiness

of the new technology, or its diffusion, may also be unknown (e.g., crypto assets). How-

ever, the agent is able to observe without error the unknown diffusion parameter of any

continuous-time process from its quadratic variation by increasing the sampling frequency

8This is distinct from what is typically modeled in the literature with incomplete information where
agents update their beliefs for free or pay a financial cost to obtain information (for surveys of this
literature, see Ziegler, 2003; Veldkamp, 2011, and the references therein). Instead, here the agent acquires
knowledge through effort (Arrow, 1962; Grossman, Kihlstrom, and Mirman, 1977; Rob, 1991; Johnson,
2007) and the cost of learning is its observer effect: it disturbs the process of aggregate consumption by
inserting uncertainty about its drift and by increasing the magnitude of its diffusion.
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(as shown by Williams, 1977, p. 222-224), hence the focus of our paper on the unknown

drift. It is a potentially interesting extension to think about modeling a situation in which

the riskiness of the new technology is also unknown.9

The agent learns by observing the history of aggregate consumption (6).10 We define

the information filtration of the agent as {F δt }, where F δt = σ(δu : u ≤ t). The agent has

initial beliefs

β ∼ N(β̂0, ν0), (8)

where β̂0 > 0, so that the agent initially believes that investing in the experimental asset

is a good idea. The parameter ν0 captures technological uncertainty. The agent’s learning

from observing δt implies that both β̂ and ν evolve dynamically over time.

Proposition 1 This partially observed economy is equivalent to a perfectly observed econ-

omy with aggregate consumption process

dδt
δt

=
(
f̄ + β̂tX −

c

2
X2
)
dt+ σ

√
1 + k2X2 + 2kϕXdŴt, (9)

where

dβ̂t =
Xνt

σ
√

1 + k2X2 + 2kϕX
dŴt, (10)

dνt
dt

= − X2ν2
t

σ2(1 + k2X2 + 2kϕX)
, (11)

and Ŵt is a standard Brownian motion with respect to the agent’s filtration {F δt } (the

shock dŴt can be interpreted as the “surprise” change in aggregate consumption):

dŴt ≡
dδt/δt − (f̄ + β̂tX − cX2/2)dt

σ
√

1 + k2X2 + 2kϕX
= dWt +

X(β − β̂t)
σ
√

1 + k2X2 + 2kϕX
dt. (12)

Proposition 1 is an application of the Kalman-Bucy filter (Theorem 12.1, p. 22, Liptser

and Shiryaev, 2001).11 According to (10), the agent revises the estimate β̂ in the direction

of the consumption surprises she observes (Brennan, 1998). The expression in (11) and

9We thank an anonymous referee for this point.
10An alternative would be to allow the agent to learn by observing (3) and (4) directly. We discuss

this alternative in Appendix A.11 and show that it does not qualitatively affect our results.
11The seminal applications of the Kalman-Bucy filter in continuous-time finance are Detemple (1986),

Dothan and Feldman (1986), and Gennotte (1986).
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the initial value ν0 imply a deterministic, decreasing path for the Bayesian (technological)

uncertainty νt:

νt =

(
1

ν0

+
X2

σ2(1 + k2X2 + 2kϕX)
t

)−1

. (13)

Technological uncertainty starts at ν0, but decays to zero as t goes to infinity. One

benefit of experimentation is that the agent learns about the new technology and lowers

Bayesian uncertainty. However, when k > 0, experimentation also has a negative effect on

learning. Although the speed of learning—the term multiplying time t in (13)—increases

with experimentation, it is always lower than 1/(k2σ2). Thus, the agent cannot perfectly

learn β in any finite time.

2.1 Socially Optimal Experimentation

The agent’s choice of X affects her expected lifetime utility of consumption conditional on

information at time 0. We denote the agent’s expected lifetime utility at time 0, as defined

in (2), by U0(δ0, β̂0, ν0, X). For notational convenience, we will suppress the dependence

of U0 on the variables δ0, β̂0, and ν0. The agent trades a riskless asset in zero net supply

and a risky asset claim to the aggregate consumption (dividend) stream δt. The risky

asset is in positive supply of one share. Proposition 2 characterizes U0(X) together with

the equilibrium price-dividend ratio in this economy, P0(X).

Proposition 2 Define the function κ(X, β̂0) as follows:

κ(X, β̂0) ≡ (1− γ)

(
f̄ +Xβ̂0 − γ

σ2(1 + k2X2 + 2kϕX)

2
− c

2
X2

)
− ρ. (14)

(a) For any X ≥ 0, the representative agent’s lifetime expected utility is

U0(X) = E0

[∫ T

0

e−ρt
δ1−γ
t

1− γ
dt

]
=

δ1−γ
0

1− γ

∫ T

0

exp

[
κ(X, β̂0)t+

(γ − 1)2X2ν0

2
t2
]
dt. (15)

(b) The stochastic discount factor in this economy is ξt ≡ e−ρt(δt/δ0)−γ, with ξ0 = 1.

Thus, the equilibrium price-dividend ratio at time 0 equals

P0(X) =
1

δ0

E0

[∫ T

0

ξtδtdt

]
=

∫ T

0

exp

[
κ(X, β̂0)t+

(γ − 1)2

2
X2ν0t

2

]
dt. (16)

Part (a) of Proposition 2 requires computing the expectation E0[δ1−γ
t ]. We compute
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this expectation in Appendix A.3 using the theory of affine processes (Duffie, Filipović,

and Schachermayer, 2003). The stochastic discount factor in part (b) of Proposition 2

follows from standard results in asset pricing (Duffie 2010, Dumas and Luciano 2017, Ch.

12, Munk 2013, Ch. 8). Proposition 2 then shows that both U0(X) and P0(X) depend on

the level of experimentation, and we also notice that U0(X) =
δ1−γ
0

1−γ P0(X). The following

Corollary guarantees the existence and uniqueness of an optimal level of experimentation

when γ > 1.

Corollary 2.1 If γ > 1, the expected lifetime utility U0(X) is strictly concave in X.

Corollary 2.1 implies that the first order condition with respect to X is necessary and

sufficient for maximizing lifetime utility. This is guaranteed when γ > 1, an assumption

that we maintain throughout. (We discuss the case γ < 1 in Appendix A.15 and we

consider an extension to recursive preferences (Epstein and Zin, 1989) in Section 4.4.)

Before solving for the optimal level of X, we define two important quantities that

enter into the experimentation tradeoff, wealth duration and wealth convexity.

Definition 1 The wealth duration and wealth convexity, D0(X) and C0(X), are defined

respectively as the weighted average maturity and the weighted average squared maturity

of the price of a claim to aggregate consumption:

D0(X) =
1

P0(X)

∫ T

0

t exp

[
κ(X, β̂0)t+

(γ − 1)2

2
X2ν0t

2

]
dt, (17)

C0(X) =
1

P0(X)

∫ T

0

t2 exp

[
κ(X, β̂0)t+

(γ − 1)2

2
X2ν0t

2

]
dt. (18)

The denominators in (17)-(18) dictate the weights that are used to compute the

weighted averages. The wealth duration D0 measures the sensitivity of aggregate wealth

to changes in expected growth. The longer the wealth duration, the greater the impact

of experimentation on the agent’s wealth. The wealth convexity C0 measures the sensi-

tivity of wealth to changes in uncertainty about expected growth. The higher the wealth

convexity, the greater the impact of the uncertainty generated by experimentation on

wealth. Thus, D0 and C0 characterize the effect of experimentation on the term structure

of wealth. Both D0 and C0 are strictly positive quantities.

The first-order condition with respect to X, 0 = ∂U0(X)/∂X, implies

0 =

∫ T

0

(
∂κ(X, β̂0)

∂X
t+ (γ − 1)2Xν0t

2

)
exp

[
κ(X, β̂0)t+

(γ − 1)2X2ν0

2
t2
]
dt. (19)
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Dividing by P0(X) allows us to interpret the first-order condition using Definition 1:

0 =
∂κ(X, β̂0)

∂X
D0(X) + (γ − 1)2Xν0C0(X). (20)

This equation determines the socially optimal level of experimentation.

Proposition 3 At time t = 0, the representative agent chooses a socially optimal level

of experimentation that solves the following implicit equation

X∗ =


(β̂0−γkϕσ2)D0(X∗)

(γk2σ2+c)D0(X∗)+(γ−1)ν0C0(X∗)
, if β̂0 − γkϕσ2 > 0

0, otherwise.
(21)

The first-best level of experimentation is strictly positive when β̂0 − γkϕσ2 > 0, and

resembles a mean-variance portfolio.12 A more favorable belief about the promise of

the new technology (higher β̂0) increases experimentation, whereas more disruption or a

higher cost of transferring resources (higher k or c) decrease experimentation. Moreover,

the agent’s incentive to experiment with the new technology increases with diversification

(lower ϕ). Experimentation has a stronger impact when the wealth duration is longer.

When (β̂0− γkϕσ2) is positive, the agent’s incentive to experiment increases further with

the wealth duration.

These tradeoffs are best understood by writing the first-order condition (20) as follows:

β̂0D0(X∗) +X∗ν0C0(X∗)︸ ︷︷ ︸
marginal benefit

= cX∗D0(X∗) + γkσ2(ϕ+ kX∗)D0(X∗) + γX∗ν0C0(X∗)︸ ︷︷ ︸
marginal cost

, (22)

from where we can see that c is not the only cost that the agent faces when experimenting

with the new technology. Two additional terms on the right-hand side are the disruption

risk and technological uncertainty imposed by the experimental asset.

The effect of technological uncertainty on the optimal level of experimentation de-

pends on risk aversion. When γ > 1, uncertainty about the new technology dampens

experimentation, to a greater extent when the wealth convexity is higher. This can be

understood by observing that technological uncertainty ν0 affects the tradeoff on both

sides of (22). On the left-hand side, uncertainty increases the expected value of future

consumption. This is similar to the positive effect of risk on the value of real options

12In Appendix A.6, we show that the agent’s optimal choice is indeed consistent with a classic mean-
variance tradeoff (Markowitz, 1952).
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with convex payoffs. But on the right-hand side, uncertainty increases the future vari-

ance of consumption. If the agent is sufficiently risk averse, the marginal cost of higher

uncertainty exceeds its benefit. With power utility this condition is met when γ > 1.13

One caveat is that both the wealth duration and convexity are themselves functions of

X∗. In Section 3, we further characterize this dependence and show that wealth duration

increases in experimentation. Nevertheless, the overall message from Proposition 3 is

that a risk-averse agent prefers technologies that have more potential (higher β̂0); prefers

technological diversification (lower ϕ); dislikes more disruptive technologies (higher k);

and, if sufficiently risk averse, dislikes the uncertainty that new technologies introduce

into the economy (higher ν0).

2.2 Experimentation Under Competition

Now that we have characterized the socially optimal level of experimentation, we proceed

to describe how competition causes the level of aggregate experimentation to deviate from

the social optimum. We depart from the previous setup by assuming that the economy

consists of n ≥ 1 agents. All agents derive utility from consumption as in (2), with

the same coefficient of risk aversion. Together they compete to consume the aggregate

consumption basket δt.

This section assumes that all agents can actively participate in experimenting with the

new technology. In reality, some agents are passive and merely benefit from the discovery

of new technologies without actively investing in them. We consider this distinction

between active and passive agents in Section 4.2, where we show how our results are

amplified when active agents compete for the value of the rents produced exclusively by

the new technology δEt .

We model each agent’s share of aggregate consumption, θi, with a symmetric, logit

Tullock contest success function (Tullock, 1980). Here, θi represents the proportion of the

prize won based on each individual experimentation level xi (Hirshleifer, 1989). Our mod-

eling choice is motivated by Baye and Hoppe (2003), who show that rent-seeking compe-

titions, patent-race games, and innovation tournaments are often strategically equivalent

to a Tullock contest, and by the fact that contest success functions are commonly used

to characterize R&D races (D’Aspremont and Jacquemin, 1988; Chung, 1996).

13More precisely, for any time-additive utility function that is increasing and concave in current con-
sumption, uncertainty about consumption growth will decrease expected utility whenever the second
derivative of the utility with respect to the natural logarithm of consumption is negative. In the case of
power utility, this condition is satisfied when γ > 1. See Ziegler (2003, p. 52).
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We define

θi =


1
n

if xj = 0 for all j ∈ {1, ..., n},
xi∑n
j=1 xj

otherwise.
(23)

The contest success function (23) is a member of the class of “power” success functions,

for which a comprehensive axiomatic characterization in the case of n-player contests has

been provided by seminal works of Skaperdas (1996) and Clark and Riis (1998). This

justifies the utilization of equation (23) in our setup. In Section 2.3, we analyze extensions

to this function and their effect on the equilibrium level of experimentation.

Agents’ experimentation choices are perfectly observable and all agents have the same

information filtration {F δt }. Any agent i’s lifetime expected utility, U i0, can be written as

U i0(x1, ..., xn) = E0

[∫ T

0

e−ρt
(θiδt)

1−γ

1− γ
dt

]
= θ1−γ

i U0

(∑n
j=1 xj

)
, (24)

where U0(·) is the function defined and characterized in Proposition 2.

Effort by the agents in our Tullock contest affects the aggregate value of the rents

available from the consumption stream. When agents experiment, they not only fight

for consumption share, they affect the technological uncertainty and disruption risk that

everyone faces. Prior work has considered rent-seeking with spillovers like this where

the size of the pie in contests increases with effort (D’Aspremont and Jacquemin, 1988;

Chung, 1996) or shrinks (Alexeev and Leitzel, 1996). Chowdhury and Sheremeta (2011)

generalize this to consider linear combinations of effort complementarities in duopoly

contests. Thus, our work contributes in two ways to this literature: by considering a

non-linear combination and extending the analysis beyond a duopoly.

After learning (which is identical across agents and continues to hold as in Proposition

1), the aggregate consumption stream that evolves based on the total level of experimen-

tation, Xn ≡
∑n

j=1 xj, is

dδt
δt

=
(
f̄ + β̂tXn −

c

2
X2
n

)
dt+ σ

√
1 + k2X2

n + 2kϕXndŴt. (25)

This is the counterpart of Equation (9) in the representative agent version of the model,

with the aggregate level of experimentation Xn replacing X.

Any Nash equilibrium involves an optimal choice of xi ≥ 0, taking into account the

simultaneous choices of the other players. The first-order condition for agent i’s maxi-
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mization problem is

0 =
∂U i0(x1, ..., xn)

∂xi
=

(1− γ)(Xn − xi)
xiXn

θ1−γ
i U0(Xn) + θ1−γ

i

∂U0(Xn)

∂Xn

, (26)

which, after dividing by θ1−γ
i U0(Xn) and replacing U0(Xn) by

δ1−γ
0

1−γ P0(Xn) in accordance

with Proposition 2, yields

(γ − 1)(Xn − xi)
xiXn

=
∂ lnP0(Xn)

∂Xn

. (27)

Equation (27) can further be written as

Xn

xi
= 1 +

Xn

γ − 1

∂ lnP0(Xn)

∂Xn

, for all i ∈ {1, ..., n}. (28)

By inspection, it is easy to appreciate that any candidate equilibrium in this setting must

be symmetric. This is because the right-hand side of (28) is the same for all agents.

Any agent i that changes her experimentation has the same marginal impact on Xn and

therefore on the aggregate consumption stream in (25). It follows then that Xn/xi is

identical across agents.

Denote the symmetric equilibrium by (x∗, ..., x∗), where x∗ = X∗n/n. By substituting

x∗ for xi in (27), the first-order condition can be rewritten as an equation in X∗n:

(γ − 1)(n− 1)

X∗n
=
∂ lnP0(X∗n)

∂X∗n
. (29)

A key result that follows from Corollary 2.1 is that the equilibrium price-dividend ratio

P0(X) is log-convex in the aggregate level of experimentation X (see Appendix A.4).14

This result implies that the right-hand side of (29) strictly increases in X∗n ∈ [0,∞). Ap-

pendix A.4 further shows that ∂ lnP0(X∗n)/∂X∗n increases from (1−γ)(β̂0−γkϕσ2)D0(0),

which is finite, to ∞. When n ≥ 2, the left-hand side strictly decreases in X∗n ∈ [0,∞),

taking values from ∞ to 0. Thus, any equilibrium X∗n > 0 that satisfies (29) is unique.

Proposition 4 There exists a unique symmetric Nash equilibrium in which the aggregate

level of experimentation under competition among n agents is strictly positive and solves

14A function f : R → R is logarithmically convex or log-convex if f(x) > 0 for all x ∈ R and ln f is
convex (Boyd and Vandenberghe, 2004, p. 104).
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the implicit equation

X∗n =
(β̂0 − γkϕσ2)D0(X∗n) + n−1

X∗
n

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0C0(X∗n)
, (30)

and x∗i = X∗n/n ∀i. The quantity X∗n is strictly increasing in n and X∗n > X∗, ∀n ≥ 2.

To provide an intuition for the result that X∗n > X∗, let xj = X∗/n for all j, where

X∗ is the social optimum of Proposition 3, and write each agent’s utility function:

U i0(x1, ..., xn) =

(
xi∑n
j=1 xj

)1−γ

U0(X∗). (31)

Starting at this social optimum in (31), a marginal change in xi does not change U0(X∗)

by the envelope theorem (at the social optimum, ∂U0(X)/∂X = 0). However, it does

increase agent i’s consumption share because xi/
∑n

j=1 xj is increasing in xi (note that

U0(X∗n) takes strictly negative values when γ > 1, and thus U i0(x1, ..., xn) increases in xi).

Therefore, every agent has an incentive to increase her own experimentation from the

socially optimal level, so that the equilibrium generates excessive experimentation.

A major difference between our setup and a standard Tullock contest is that the prize,

U0(Xn), depends on the aggregate level of experimentation. While (31) clearly shows that

in a multiple-agent economy every agent has an incentive to increase experimentation from

the socially optimal level, an additional result of Proposition 4 is that X∗n strictly increases

in n. This is an endogenous outcome of our model and can be understood as follows.

Consider an economy with n + 1 agents, where n ≥ 2. In this economy, start at the

aggregate level X∗n, with xj = X∗n/(n + 1) for all j. That is, start from the premise that

the n+1 agents experiment in aggregate at the same level as in an economy with n agents

and write each agent’s utility function as

U i0(x1, ..., xn+1) =

(
xi∑n+1
j=1 xj

)1−γ

U0(X∗n). (32)

Equation (32) bears similarity with (31), with the key difference that now U0(·) is

evaluated at X∗n instead of X∗. Since X∗n > X∗, it follows that the value X∗n is suboptimal

and ∂U0(X∗n)/∂xi < 0. In words, further increasing experimentation when the aggregate

level is X∗n leads to a smaller aggregate “pie.” Considering this, every agent has a clear

incentive to decrease experimentation. But although a marginal change in xi shrinks the

pie, it also increases the consumption share xi/
∑n+1

j=1 xj, or agent i’s share of the pie.
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Appendix A.7 shows that this second force always dominates in our model and therefore

every agent has an incentive to increase her own experimentation from the levelX∗n/(n+1),

so that in equilibrium the aggregate level of experimentation strictly increases in n.

The principal outcome is that creative destruction and Schumpeterian competition

ultimately result in over-experimentation and a reduction in aggregate welfare from the

socially optimal level. As competition intensifies, the aggregate level of experimentation

deviates increasingly from the socially optimal level. This finding aligns with existing

models of technological change (e.g., Acemoglu, 2009, Ch. 12.3), where business stealing

generates a divergence between the private and social value of innovation, thereby enabling

the possibility of excessive innovation.

Moreover, it can be shown that competition can promote inefficient technologies. Con-

sider the case β̂0 − γkϕσ2 < 0 from Proposition 3. From the perspective of a welfare-

maximizing agent, such a technology is inefficient and X∗ = 0. But when n ≥ 2 agents

compete for consumption share, Proposition 4 implies X∗n > 0. Thus, innovation accompa-

nied by Schumpeterian competition can lead to over-investment in inefficient technologies.

Illustration We illustrate the effect of Schumpeterian competition on experimentation

with a numerical example. The parameters that we choose are economically plausible

and will be the same for the rest of the paper. We fix the risk aversion to γ = 2, below

the level of ten deemed reasonable by Mehra and Prescott (1985, p. 154).15 We calibrate

the long-term growth and the volatility of consumption in the status-quo economy to

f̄ = 0.03 (Andrei and Hasler, 2015, Table 1) and σ = 0.05 (this parameter allows us to

obtain reasonable levels for the risk premium in Section 3). The agents’ initial beliefs

about the new technology are set to β̂0 = 0.03 (the same value as f̄) and ν0 = 0.032 (in

line with the variance of expected growth of consumption, estimated at 0.0292 in Andrei

and Hasler, 2015). We fix the disruption parameter to k = 3 and the cost of transferring

resources to c = 0.02. These values imply that at the social optimum (X∗ = 0.16), the

price-dividend ratio is P0(X∗) = 17, which is consistent with Robert Shiller’s Cyclically

Adjusted PE Ratio that averaged 16.91 from 1870 to 2021. Given this, the representative

agent is willing to forgo 0.03% expected growth in the status-quo to experiment with

the new technology, as shown in Equation (4). For the rest of our illustrations, we fix

ϕ = 1 (i.e., no technological diversification), unless indicated otherwise. Finally, we fix

T = 100 and the subjective discount rate to ρ = 0.03. These values yield a duration

15Friend and Blume (1975) estimate an average coefficient well in excess of one and perhaps in excess of
two. Dreze (1981) finds values between 0.6 and 10 using an analysis of deductibles in insurance contracts.
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Figure 1: Equilibrium Experimentation with Competition. Panel (a) depicts the
solution of Equation (29), where the solid line represents the right-hand side and the
dashed (dotted) line represent the left-hand side for n = 2 (n = 5). The social optimum,
X∗, is obtained when the solid line crosses the zero axis. Panel (b) depicts the aggregate
level of experimentation as a function of the number of agents in the economy, for two
levels of technological diversification, ϕ ∈ {0, 1}. The calibration used is: γ = 2, f̄ = 0.03,

β̂0 = 0.03, ν0 = 0.032, σ = 0.05, k = 3, ρ = 0.03, T = 100, c = 0.02, and δ0 = 1.

D0(X∗n) between 17 years (for n = 1) and 65 years (for n = 10), consistent with numbers

estimated by Van Binsbergen (2020).

Panel (a) of Figure 1 depicts the solution of Equation (29), where the solid line rep-

resents the right-hand side and the dashed (dotted) line represents the left-hand side for

n = 2 (n = 5). The social optimum X∗ is obtained when the solid line crosses the zero

axis.16 The plot shows that when n ≥ 2 the equilibrium generates excessive levels of

experimentation. Panel (b) plots the aggregate level of experimentation X∗n when the

number of agents varies from 1 to 10, for two levels of technological diversification. The

lines start at the social optimum X∗ and experimentation increases as competition rises

in the market, further confirming the results of Proposition 4. Diversification (ϕ < 1)

increases the aggregate level of experimentation, as shown with the dashed line. The am-

plification arises because the term β̂0 − γkϕσ2 now takes into account the diversification

16This example is only intended to be illustrative, and in reality, X∗ should increase gradually. However,
in the context of our theoretical model, the decision to experiment is made only once. A more realistic
model with dynamic experimentation—as the one we develop in Section 4.3—would take into account
the gradual adoption of the new technology over time.
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benefit of the new technology.

2.3 Economic forces that may dampen experimentation

Based on the results so far, it is natural to consider what might dampen the over-

experimentation result obtained in Proposition 4 and illustrated in Figure 1. One possi-

bility is that there are decreasing returns to experimentation. This can be analyzed by

an extension of the contest success function (23) that preserves the axiomatic characteri-

zation provided by Skaperdas (1996) and Clark and Riis (1998).

Consider the following extension of the Tullock contest:

θi =


1
n

if xj = 0 for all j ∈ {1, ..., n},
xri∑n
j=1 x

r
j

otherwise.
(33)

The parameter r > 0 measures returns to scale: the case 0 < r < 1 represents decreasing

returns, while r > 1 represents increasing returns to experimentation (Baye, Kovenock,

and De Vries, 1994; Chung, 1996). We will focus here on the case of decreasing returns.

As in Section 2.2, any Nash equilibrium involves an optimal choice of xi ≥ 0, taking

into account the simultaneous choices of the other players. The first-order condition for

agent i’s maximization problem is

0 =
∂U i0(x1, ..., xn)

∂xi
=

(1− γ)r(x−1
i

∑n
j=1 x

r
j − xr−1

i )∑n
j=1 x

r
j

θ1−γ
i U0(Xn) + θ1−γ

i

∂U0(Xn)

∂Xn

, (34)

which, after dividing by θ1−γ
i U0(Xn) and replacing U0(Xn) by

δ1−γ
0

1−γ P0(Xn) in accordance

with Proposition 2, yields

(γ − 1)r(
∑n

j=1 x
r
j − xri )

xi
∑n

j=1 x
r
j

=
∂ lnP0(Xn)

∂Xn

. (35)

In a symmetric equilibrium, this leads to

(γ − 1)(n− 1)r

X∗n
=
∂ lnP0(X∗n)

∂X∗n
, (36)

which yields an equilibrium aggregate level of experimentation that solves

X∗n =
(β̂0 − γkϕσ2)D0(X∗n) + (n−1)r

X∗
n

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0C0(X∗n)
. (37)
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Comparing this with the result of Proposition 4, the aggregate level of experimentation

is lower when there are decreasing returns (0 < r < 1). The dampening effect is stronger

for smaller values of r. The only situation in which the social optimum of Proposition 3

is reached is in the limit r → 0. Otherwise, agents will over-experiment as in Section 2.2.

A second factor that can dampen aggregate experimentation is the presence of nega-

tive externalities imposed by competition on the utility gained through experimentation

(Chowdhury and Sheremeta, 2011). Our framework already accounts for a negative ex-

ternality in the form of deviation from the social optimum, which decreases aggregate

welfare and shrinks the resources available to all agents. However, it is not uncommon for

competition for new technologies to lead to patent warfare, which can harm innovation

by diverting resources towards litigation or discouraging experimentation, as highlighted

by the works of Shaver (2012), Karakashian (2015), and Trappey, Trappey, and Wang

(2016).

To examine this, assume that instead of (24) each agent gets

U i0(x1, ..., xn) = f(n, xi)θ
1−γ
i U0

(∑n
j=1 xj

)
, (38)

where f(n, xi) is a function that satisfies three assumptions: (i) f(1, xi) = 1, (ii) f(n, xi) ≥
1, and (iii) ∂f(n, xi)/∂xi > 0 for n > 1.

Assumption (i) implies that if n = 1 we obtain the social optimum of Proposition

3. Assumptions (ii) and (iii) imply ∂ ln f(n, xi)/∂xi > 0, a property that will be useful

below. Moreover, since f(n, xi) ≥ 1, the multiplication with f(n, xi) in (38) magnifies

U0(·). Keeping in mind that U0(·) is negative when γ > 1, this magnification generates an

utility loss for agent i. This utility loss occurs only when competition is present, i.e., when

n > 1. One can think of this effect as a negative externality that arises from competition

(e.g., patent warfare).

The first-order condition for agent i’s maximization problem is

0 =
(1− γ)(Xn − xi)

xiXn

θ1−γ
i U0(Xn)f(n, xi) + θ1−γ

i

∂U0(Xn)

∂Xn

f(n, xi) + θ1−γ
i U0(Xn)

∂f(n, xi)

∂xi
,

(39)

which, after dividing by θ1−γ
i U0(Xn)f(n, xi) and replacing U0(Xn) by

δ1−γ
0

1−γ P0(Xn) in ac-

cordance with Proposition 2, yields

(γ − 1)(Xn − xi)
xiXn

− ∂ ln f(n, xi)

∂xi
=
∂ lnP0(Xn)

∂Xn

. (40)
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Comparing this condition with (29), we notice the term ∂ ln f(n, xi)/∂xi, which is

positive according to assumptions (ii) and (iii) above. Thus, this term decreases the

left-hand side and according to panel (a) of Figure 1 dampens the equilibrium level of

experimentation. The aggregate level of experimentation now solves

X∗n =
(β̂0 − γkϕσ2)D0(X∗n) + n−1

X∗
n
− 1

γ−1
∂ ln f(n,xi)

∂xi

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0C0(X∗n)
. (41)

A sufficiently strong negative externality imposed on agent i by competition can

generate under-investment in the new technology. Consider the externality function

f(n, xi) = eα(n−1)xi , with α > 0. This function satisfies assumptions (i)-(iii) above.

It can be shown that α > γ − 1 leads to an aggregate level of experimentation that is

below the social optimum.

3 The Implications of Schumpeterian Competition

In this section, we evaluate the effects of Schumpeterian competition and excessive levels

of experimentation on technological uncertainty, systematic risk, and asset prices.

3.1 Risk and Asset Prices

Both disruption risk (k > 0) and technological uncertainty (ν0 > 0) affect the path of the

future volatility of consumption, {Vol0[δt]}Tt=0. Figure 2 illustrates this for one maturity

(t = 30). When competition increases experimentation in the economy, it magnifies the

disturbance to the status quo, which is the hashed area in the plot. Experimentation also

initially introduces technological uncertainty, which further magnifies risk and is captured

by the gray area in the plot. So, experimentation creates macroeconomic risk through

two channels and competition makes this worse.

To explore how these two sources of risk affect financial markets, we solve for the

equilibrium asset prices when the n agents from the previous section share the aggregate

output in proportions given by (23) and determined in Proposition 4. Agents trade a

risky asset, which is a claim to the aggregate output stream δt, and a risk-free asset that

is in zero net supply. The equilibrium price-dividend ratio at any time t ∈ [0, T ] follows

from Proposition 2:

Pt(X∗n) =

∫ T

t

exp

[
κ(X∗n, β̂t)(s− t) +

(1− γ)2

2
(X∗n)2νt(s− t)2

]
ds. (42)
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Figure 2: Equilibrium Experimentation with Competition and its Effect on
Macroeconomic Risk. The figure depicts the increase in the volatility of future con-
sumption, Vol0[δt], for t = 30 years. The increase is due to disruption risk (k > 0, hashed
area) and technological uncertainty (ν0 > 0, gray area).

The price-dividend ratio increases with the uncertainty about β. To see this, suppose

that β were known (i.e., β̂t = β and νt = 0 for all t). Then, an application of the Leibniz

integral rule would confirm that ∂2Pt(X∗n)/∂β2 > 0 and thus the price-dividend ratio is

convex in β. Since β is in fact a random variable, Jensen’s inequality implies that the

price-dividend ratio under incomplete information (νt > 0) must be greater than the one

under complete information (νt = 0). This is a general result and does not depend on the

value of γ (e.g., Pástor and Veronesi, 2003, 2006).

Our analysis implies, then, that over-valuation is magnified with Schumpeterian com-

petition because rent seeking amplifies technological uncertainty. Panel (a) in Figure 3

depicts the price-dividend ratio as a function of aggregate experimentation (solid line).

The dashed line depicts the price-dividend ratio while setting technological uncertainty to

zero. The gap between the two lines, illustrated with the gray area, provides a measure of

over-valuation due to technological uncertainty. We also plot the point that corresponds

to the socially optimal level of experimentation. Schumpeterian competition leads to

over-experimentation, which increases the wealth duration and the gap between the two

lines. The gap grows from being almost negligible at the social optimum to roughly 100%

when five agents compete for consumption share.

The over-valuation of the asset caused by competition and technological uncertainty

has consequences for the future path of the price-dividend ratio. In panel (b), we compare
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Figure 3: Experimentation and Asset Prices. The solid line in panel (a) depicts the
price-dividend ratio as a function of the level of aggregate experimentation in the economy.
The dashed line depicts the price-dividend ratio with uncertainty set to ν0 = 0. The dot
labeled “n = 5” corresponds to the equilibrium aggregate level of experimentation in an
economy with five agents. Panel (b) depicts average price paths over time starting from

“n = 5” and β̂0 = β (solid and dotted lines) and from the social optimum (dashed line).
The dotted line maintains the maturity of the asset constant at T = 100 years.

the average paths of the price-dividend ratio once the points “n = 5” and the social

optimum have been reached. We start from a prior β̂0 that is exactly equal to the true

value of β, so that agents are initially right, but are still uncertain about the expected

growth of the new technology. As such, we are not imposing any ex-ante bias on future

price paths. This assumption ensures that simulations of the economy over time will

result in an average β̂t that is equal to the true value of β.17 Because the only remaining

state variable that enters into the price-dividend ratio, νt, decreases deterministically over

time, we can plot the average price-dividend ratio over time by simply using (13) for the

value of νt, without resorting to simulations.

The solid line in panel (b) depicts the average path of the price-dividend ratio starting

from a competitive equilibrium with five agents. The dashed line shows the average path

of the price-dividend ratio starting from the social optimum. Because the remaining

life of the asset diminishes, we also plot the dotted line, which isolates the effect of

17This can be seen from Proposition 1. At time t = 0, dŴ0 = dWt (because β − β̂0 = 0). Technically,

at time t = 0 the filter β̂ is a martingale. This ensures that the average of its future simulated values one
step ahead, β̂0+dt, is exactly β. Then apply the same reasoning at time t = 0 + dt.
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the decrease in uncertainty by holding the remaining asset life constant at T = 100

years.18 With competition (n = 5), the average asset price has the tendency to decrease

as uncertainty about the new technology resolves. The pace of the decline depends on

the rate at which uncertainty about the new technology is resolved. Equation (13) shows

that uncertainty decays faster with over-experimentation, which accelerates the decline.

In contrast, after experimentation at the social optimum, the average asset price decrease

due to resolution of uncertainty is negligible. Thus, markets characterized by intense

Schumpeterian competition are prone to asset price over-valuation and to subsequent

declines through learning and resolution of uncertainty.

Now we explore the effects of experimentation and rent-seeking on how the agents trade

the risky asset. We rely on results from the theory of dynamic portfolio choice (Merton,

1973) under incomplete information (Brennan, 1998). Once experimentation begins, all

agents face the same time-varying investment opportunity set and the expected growth

rate of the economy is driven by β̂t. Thus, the agents need to hedge and their willingness

to hold the risky asset evolves over time. Denote the risk premium by πt(X
∗
n) and the

instantaneous diffusion of the risky asset by σP,t(X
∗
n). Both quantities will be determined

in equilibrium once we impose market clearing.

Proposition 5 At t > 0, agents invest the same proportion of their wealth in the risky

asset,

φt =
1

γ

πt(X
∗
n)

σP,t(X∗n)2
+ (1− γ)

(X∗n)2νt

σ
√

1 + k2(X∗n)2 + 2kϕX∗nσP,t(X
∗
n)
Dt(X∗n), (43)

where Dt(X∗n) is the wealth duration at time t ∈ [0, T ], which follows from Definition 1.

The first term in (43) is the myopic demand that results from a classic risk-return

tradeoff (Markowitz, 1952). The second is a hedging demand, Ht(X
∗
n, νt), which results

from a desire to manage the uncertainty of future changes in expected growth (Merton,

1973). As time evolves, agents trade in order to hedge the technological uncertainty

generated by experimentation. For example, if γ > 1 and σP,t(X
∗
n) > 0, the hedging

demand Ht(X
∗
n, νt) is negative: agents dislike uncertainty and therefore decrease their

demand for the risky asset, consistent with the analysis in Brennan (1998). In this case,

an increase in β̂t is “good news” for consumption, but because the return of the risky

asset is positively correlated with consumption growth (σP,t > 0), the hedging weight is

negative in order to stabilize agents’ utility.

18This adjustment is unnecessary in the social optimum, where the decrease in the price-dividend ratio
is almost imperceptible with our calibration.
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Before deriving explicit expressions for πt(X
∗
n) and σP,t(X

∗
n), we clarify the impact

that technological uncertainty has on both of these quantities. As in Breeden (1979), the

market price of risk in this economy is equal to the diffusion of aggregate consumption

times aggregate risk aversion, ζ(X∗n) = γσ
√

1 + k2(X∗n)2 + 2kϕX∗n. Proposition 5 and

market clearing together imply:19

πt(X
∗
n) =

ζ2(X∗n)/γ

1−Ht(X∗n, νt)
and σP,t(X

∗
n) =

ζ(X∗n)/γ

1−Ht(X∗n, νt)
. (44)

Since the market price of risk does not depend on νt,
20 technological uncertainty affects

πt(X
∗
n) and σP,t(X

∗
n) only through the agents’ hedging motives: a negative hedging demand

lowers both πt(X
∗
n) and σP,t(X

∗
n). Ceteris paribus, the risk premium and stock return

diffusion are lower in an economy with technological uncertainty (νt > 0) than in an

economy without technological uncertainty (νt = 0 and Ht(X
∗
n, 0) = 0).

Proposition 6 fully characterizes the equilibrium stock diffusion and the risk premium

in this economy, based on primitives in the model and on the wealth duration.21

Proposition 6 The equilibrium stock diffusion with experimentation is given by

σP,t(X
∗
n) = σ

√
1 + k2(X∗n)2 + 2kϕX∗n − (γ − 1)

(X∗n)2νt

σ
√

1 + k2(X∗n)2 + 2kϕX∗n
Dt(X∗n), (45)

and the equilibrium risk premium is

πt(X
∗
n) = ζ(X∗n)σP,t(X

∗
n) = γσ2(1 + k2(X∗n)2 + 2kϕX∗n)− γ(γ − 1)(X∗n)2νtDt(X∗n). (46)

Because k > 0, the first term in (45) shows that experimentation increases σP,t(X
∗
n)

by disturbing the economy and amplifying macroeconomic fluctuations. However, the

second term implies that when γ > 1, technological uncertainty lowers σP,t(X
∗
n), which

is due to a hedging motive and is consistent with the previous discussion of (44). Thus,

the two types of risk imposed by creative destruction—disruption risk and technological

uncertainty—may have opposite effects on systematic risk. The balance between these

19To obtain (44), impose market clearing (φt = 1) in (43) and use ζ(X∗
n) = πt(X

∗
n)/σP,t(X

∗
n) to solve

for πt(X
∗
n) and σP,t(X

∗
n).

20This statement is true in any setting with time-additive utility. It is only in settings with recursive
utility that the market price of risk depends on the level of uncertainty about the growth rate. See Section
4.4 for an extension of our setup to recursive utility.

21An analogous of this proposition in a standard general equilibrium model with learning can be found
in Brennan and Xia (2001), Theorem 5.
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Figure 4: Experimentation with Competition and its Effect on the Wealth
Duration. The line depicts the wealth duration as a function of the number of agents in
the economy.

two forces depends on the level of experimentation.22

The expression for the equity risk premium in (46) is also made up of two terms.

Agents require a premium for holding the risky asset, but at the same time their hedging

motives yield a negative (insurance) premium. The balance between these two forces is

affected by the level of experimentation for two reasons. First, higher experimentation

increases the uncertainty in the economy and the impact of hedging. Second, higher

experimentation tends to increase the wealth duration Dt(X∗n). This can be seen from

(17), where the denominator dictates the weights that are used in the numerator to

compute the weighted-average maturity. Technological uncertainty increases the long-

maturity weights, amplifying the long-term impact of experimentation. More competition

increases experimentation, which puts more weight on long-term payoffs and increases

Dt(X∗n). Figure 4 plots the wealth duration for different values of n. It confirms that the

wealth duration increases with the degree of competition.

Figure 5 illustrates the effect of experimentation and competition on the risk premium.

The risk premium is hump-shaped in experimentation. The initial increase is driven

22Another way to understand the opposite impact of the two terms in (45) is to start from the asset
price, Pt = δtPt(X

∗
n), where Pt(X

∗
n) is the equilibrium price-dividend ratio defined in (42). A positive

shock to δt increases Pt, hence the first term in (45). But the same positive shock increases β̂t through

agents’ learning (Proposition 1). A higher β̂t implies high future consumption and low future marginal
utility. When γ > 1 the latter effect dominates, hence the second term in (45).
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Figure 5: Experimentation and the Risk Premium. This figure plots the effect of
experimentation on the risk premium in the economy.

by disruption risk, and the subsequent decrease is driven by technological uncertainty.

The effect of competition on the risk premium depends on the number of agents in the

market. When n is low, the impact of disruption risk dominates and competition increases

the risk premium. However, when n is large, the complementarity between duration

and technological uncertainty creates a significant hedging demand and lowers the risk

premium. Intense competition may lead to a negative risk premium, when σP,t(X
∗
n) < 0.

In this case, the risky asset becomes a good hedge against fluctuations in expected growth,

Ht(X
∗
n, νt) > 0, and agents increase their overall demand of the risky asset beyond the

myopic position dictated by the standard tradeoff between risk and return.

Proposition 6 has additional implications for the term structure of risk. A recent litera-

ture studies the risk premia of equity claims with different maturities and documents that

long-duration assets earn lower returns than short-duration assets (Lettau and Wachter,

2007, 2011; Weber, 2018; Van Binsbergen, 2020; Gonçalves, 2021). Over the past century,

long-duration dividend risk has received little to no compensation (Van Binsbergen, 2020).

The negative impact of duration on the risk premium in our model (Equation 46) is con-

sistent with these findings and proposes that long-duration assets may provide hedging

against technological uncertainty. The fact that in the model assets that are more exposed

to technological uncertainty have longer duration is consistent with the idea that growth

firms are long-duration assets (Lettau and Wachter, 2007). Understanding the impact of

Schumpeterian competition on the equity duration and the cross-section of returns may

prove to be a fruitful avenue for future research.
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Figure 6: Dynamic Patterns of Risk. The top panel shows the evolution of νt after the
time of technology adoption (t = 0), in an economy with n = 5 agents. The middle panel
shows the evolution of wealth duration (while keeping the maturity T constant, to avoid
a mechanical effect arising from the reduction of maturity). The bottom panel depicts
the dynamics of the risk premium over the same period of time.

3.2 Return Predictability and Secular Trends

While the impact of disruption risk on the risk premium is permanent, the effect of tech-

nological uncertainty is time-varying, depending on the speed of learning and the amount

of wealth duration. Proposition 6 shows that the risk premium is time-varying and de-

pends on both νt and Dt(X∗n). When a new technology is initially adopted, technological

uncertainty and wealth duration are both high. Agents build hedging positions to manage

risk, which decreases the risk premium. However, as learning takes place, both techno-

logical uncertainty and wealth duration decline, so that the risk premium rises over time.

Figure 6 illustrates these patterns in an economy with n = 5 competitors.

Since the price-dividend ratio in (42) is partially driven by movements in technological

uncertainty, when agents over-experiment, uncertainty increases the price-dividend ratio,
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Panel I: n = 5, X∗5 = 0.917 (medians of 10,000 simulations)

4Q 12Q 20Q 40Q

Coefficient of Log (P/D) 0.043 0.128 0.207 0.411

t-stat 1.263 1.257 1.302 1.555

R-squared 0.010 0.030 0.051 0.109

Expected Excess Returns (annualized) abcdefgh 1.1% 1.3% 1.5% 1.9%

Panel II: n = 20, X∗20 = 1.271 (medians of 10,000 simulations)

4Q 12Q 20Q 40Q

Coefficient of Log (P/D) -0.033 -0.093 -0.144 -0.243

t-stat -2.087 -2.315 -2.469 -2.614

R-squared 0.054 0.137 0.190 0.274

Expected Excess Returns (annualized) -7.5% -6.8% -6.1% -4.5%

Table 1: Return Predictability with the Price-Dividend Ratio (Simulations).
This table reports the predictability of excess stock returns with the log price-dividend
ratio, estimated from (47). There are two panels, each one corresponding to a different
value of n. Each panel reports medians from 10,000 simulations for the regression coeffi-
cients, t-stats computed with Newey and West (1987) standard errors with 2(K−1) lags,
and the R2 coefficients. The panels show results for different horizons: 4, 12, 20, and
40 quarters. The last row of each panel computes the median annualized excess return
between the initial date and the horizon indicated in each column.

but after t = 0 the downward drift of uncertainty caused by learning (Figure 6, top

panel) deflates the price-dividend ratio (Figure 3, panel (b)). These dynamics of risk and

pricing suggest that competition impacts the time-series predictability of returns. Using a

discretization of our continuous-time setup (Appendix A.9), we perform simulations of the

model at a quarterly frequency for 100 years and run the following predictive regressions

(Beeler and Campbell, 2012):

K∑
k=1

(rt+k − rf,t+k) = aK + bKpdt + εt+K , (47)

where the dependent variable is the K-period time-aggregated excess return, the inde-

pendent variable is the log price-dividend ratio, and K = {4, 12, 20, 40} quarters. We

keep the remaining life of the asset constant at T = 100 years in order to eliminate effects

arising from the diminishing time to maturity.
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The results in Table 1 show that return predictability is positive for n = 5, but negative

for n = 20. When n = 20, the last line of the table shows that agents expect negative

excess returns: they are willing to hold the risky asset at a high price, for which they

demand a negative risk premium. Thus, high prices may negatively predict future excess

returns, particularly when Schumpeterian competition is intense.

Finally, our framework seems to provide an economic interpretation of how changes

in competition may drive secular trends relating to innovation and risk premia. In recent

decades, there has been a secular decline in competition that accelerated in the early

2000s (e.g., Grullon, Larkin, and Michaely, 2019; De Loecker, Eeckhout, and Unger,

2020). Recent studies have attributed slumping investment and innovation (Gutiérrez and

Philippon, 2018) and rising risk premia in equity markets (Corhay et al., 2020) to declining

competition. Our model’s predictions appear to be consistent with these stylized facts: a

decline in the number of competitors would indeed result in depressed investment in new

technologies (Figure 1) and higher risk premia (Figure 5). The model can therefore provide

an economic explanation for why declining competition leads to slumping innovation and

a rising equity premium since the early 2000s.

4 Extensions and Discussion of Assumptions

Our baseline model relied on several simplifying assumptions, which served our purpose

of isolating the main results. In this section, we relax some of these assumptions and

explore various extensions of the model. For the rest of the paper, we will assume ϕ = 1

to keep the analysis of these extensions as simple as possible.

4.1 Infinite Horizon and Obsolescence

An important feature of our model is that time is a state variable: as can be seen from (13),

when agents experiment with the new technology, the technological uncertainty νt decays

deterministically with time. This gradual resolution of uncertainty, arguably a common

feature of many new technologies, generates our dynamic results in Section 3.2. But it

comes with a caveat: it is a well-known observation that learning about a constant, as

in Proposition 1, implies that the posterior belief β̂t is a martingale and thus has infinite

persistence (Collin-Dufresne, Johannes, and Lochstoer, 2016). The immediate implication

of this observation is that all of the integrals in Proposition 2 would not converge when

T → ∞ (the terms that multiply t2 in (15)-(16) are strictly positive). Thus, the main

purpose of our finite horizon assumption is to keep the model stationary.
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The model can be extended to an infinite horizon case without losing the realistic

feature of a gradual resolution of uncertainty, by supposing that the new technology

will eventually become obsolete (Aghion and Howitt, 1992). Assume that the unknown

parameter β decays deterministically to zero

dβt = −λβtdt, (48)

and that the rate of obsolescence (λ ≥ 0) for the new technology is commonly known. (In

the baseline model, λ = 0.) Continue to assume that agents have a common initial prior,

β0 ∼ N(β̂0, ν0), (49)

with β̂0 > 0. They learn about β as follows.

Proposition 7 This partially observed economy is equivalent to a perfectly observed econ-

omy with aggregate consumption process

dδt
δt

=
(
f̄ + β̂tX −

c

2
X2
)
dt+ σ(1 + kX)dŴt, (50)

where

dβ̂t = −λβ̂dt+
Xνt

σ(1 + kX)
dŴt, (51)

dνt
dt

= −2λνt −
X2ν2

t

σ2(1 + kX)2
, (52)

and Ŵt is a standard Brownian motion with respect to the agents’ filtration {F δt }.

Equation (52) implies

νt =

(
e2λt

ν0

+
X2

σ2(1 + kX)2

e2λt − 1

2λ

)−1

, (53)

which has the same interpretation as (13).

The following is the counterpart of Proposition 2 in the infinite horizon case.

Proposition 8 Define the function κ(X, β̂0, t) as follows:

κ(X, β̂0, t) ≡
[
(1− γ)

(
f̄ − c

2
X2 − γσ

2(1 + kX)2

2

)
− ρ
]
t+ (1− γ)β̂0X

1− e−λt

λ
. (54)
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(a) For any X ≥ 0, the representative agent’s lifetime expected utility is

U0(X) =
δ1−γ

0

1− γ

∫ ∞
0

exp

[
κ(X, β̂0, t) +

(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2
]
dt. (55)

(b) The equilibrium price-dividend ratio equals

P0(X) ≡
∫ ∞

0

exp

[
κ(X, β̂0, t) +

(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2
]
dt. (56)

When λ > 0, the last terms in (54)-(56) are bounded as t → ∞. Thus, we can

derive a necessary and sufficient condition for the expected lifetime utility U0(X) and the

price-dividend ratio P0(X) to be finite (the transversality condition, see Appendix A.10):

(1− γ)

(
f̄ − c

2
X2 − γσ

2(1 + kX)2

2

)
− ρ < 0. (57)

Obsolescence keeps the infinite horizon model stationary, while at the same time preserves

concavity of the expected lifetime utility, as in Corollary 2.1. We now write a modified

version of Proposition 4.

Proposition 9 There exists a unique symmetric Nash equilibrium in which the aggregate

level of experimentation under competition satisfies (57) and solves

X∗n =
β̂0DE0 (X∗n)− γkσ2D0(X∗n) + n−1

X∗
n

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0CE0 (X∗n)
, (58)

and x∗i = X∗n/n ∀i. The quantity X∗n is strictly increasing in n and X∗n > X∗, ∀n ≥ 2.

The main difference with Proposition 4 is that the rate of obsolescence modifies the

wealth duration and wealth convexity that pertain to the economic value generated by

the new technology. Hence the new quantities DE0 (X∗n) and CE0 (X∗n) in (58) are distinct

from D0(X∗n), and C0(X∗n), as we show in Appendix A.10. With this in mind, all of our

previous results go through in the infinite horizon case.

Higher technological obsolescence impacts both DE0 (X∗n) and CE0 (X∗n). Depending on

which effect dominates in (58), higher obsolescence may lead to stronger or weaker aggre-

gate experimentation. Figure 7 depicts the aggregate experimentation X∗n as a function

of the number of agents in the economy. We augment our baseline calibration with

λ ∈ [0.01, 0.15], which implies depreciation rates between 1% and 14% and a half-life for
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Figure 7: The Impact of Obsolescence on Experimentation. The two lines depict
the aggregate amount of experimentation X∗n as a function of the number of agents in the
economy, for two different values of the rate of obsolescence λ.

βt between 5 and 65 years.23 The plot has two lines, one for λ = 0.01 (low obsolescence)

and one for λ = 0.15 (high obsolescence). With our calibration, high obsolescence gener-

ates weaker experimentation when competition is low but stronger experimentation when

competition is high. While we have not been able to prove the generality of this result,

the illustration suggests that intense competition for technologies that are under stronger

threat of becoming obsolete may exacerbate the over-experimentation result obtained in

our baseline setup.

4.2 Competition and Inequality

We assumed in Section 2.2 that all agents can actively experiment with the new technology.

We now depart from this and consider that there are two groups of agents. The first are

n ≥ 1 active agents, who are similar to those in Section 2. The second are passive agents,

who are residual claimants in the economy and, since they are passive, we aggregate them

into one agent p.

All agents derive utility from consumption with the same coefficient of risk aversion

as in (2). Together they consume the aggregate consumption basket δt. Thus, the pas-

sive agents benefit from the introduction of the new technology by enjoying the same

23These are relatively wide intervals that encompass measurements of depreciation rates of technological
knowledge by Park, Shin, and Park (2006) and of technology cycle times (the median age of the patents
cited on the front page of a patent document) by Kayal and Waters (1999).
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consumption basket (5) as the active agents. But the distinguishing feature between ac-

tive and passive agents is that only the active agents are able to allocate capital to the

production of the experimental good: as in our baseline model with competition, the n

active agents in aggregate choose a level of experimentation Xn =
∑n

i=1 xi. By doing so,

they are rewarded for introducing innovation into the economy and collectively receive

the rents associated with the experimental good. We show in Appendix A.1 that the size

of these rents is measured as the aggregate expenditure share of the experimental good,

pEt δ
E
t =

Xn

1 +Xn

δt, (59)

where pEt is the equilibrium price of the experimental good, expressed in terms of the

numéraire (the aggregate good δt). Thus, the main difference with the baseline model

of Section 2.2 is that the active agents compete for a share Xn/(1 + Xn) of the total

consumption stream, which itself is increasing in aggregate experimentation.

On the other hand, the passive agents are left with the remaining share of the aggregate

consumption stream, pSt δ
S
t = δt/(1 + Xn). Thus, while the passive agents may still

enjoy the benefits of the new technology by adding its experimental good to their own

consumption bundle (5), their aggregate expenditure share is driven by the aggregate

experimentation Xn. One example of a passive agent might be someone who enjoys using

Zoom technology but is not a Zoom shareholder.

In keeping with Section 2.2, we assume that each individual active agent’s experimen-

tation choice, xi, dictates her own share of the pie, where the active agents’ pie is now

given by (59):

θi =
xi∑n
j=1 xj

Xn

1 +Xn

=
xi

1 +Xn

. (60)

This yields a modified Tullock contest, in which the success functions are xi/(1 + Xn)

instead of xi/Xn. In sum, the consumption shares of all agents in the economy are xi
1+Xn

δt for any active agent i ∈ {1, ..., n} ,
1

1+Xn
δt for the passive agent.

(61)

Note that it is unnecessary to separately define the case when no active agents experi-

ments, i.e., xi = 0 ∀i ∈ {1, ..., n}. In that case, one can consider all agents to be one

passive agent who consumes the dividend stream provided by the status-quo economy (1).
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The following is the counterpart of Proposition 4 in this modified version of the game.

Proposition 10 There exists a unique symmetric Nash equilibrium in which the aggre-

gate level of experimentation under competition among n agents solves

X∗n =
(β̂0 − γkσ2)D0(X∗n) + n−1

X∗
n

+ 1
X∗
n(1+X∗

n)

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0C0(X∗n)
, (62)

and x∗i = X∗n/n ∀i. The quantity X∗n is strictly increasing in n and X∗n > X∗, ∀n ≥ 1.

For any value n ≥ 1, the equilibrium level of experimentation that results from Proposi-

tion 10 is always higher than the level of experimentation in the baseline model. This arises

because the active agents together increase their total share of consumption, X∗n/(1+X∗n),

which provides them with an additional incentive to experiment. It creates a new term

in the numerator of (62), 1/[X∗n/(1 +X∗n)]. Since this term is positive, the left-hand side

must be higher than in Proposition 4 in order to restore the equality.

In turn, when active agents experiment more here than in the baseline model, this

imposes a displacement effect and added risk on the passive agent (Kogan et al., 2020).

So, rent seeking and competition by active agents not only reduces the consumption share

for passive agents, it worsens the quality of the dividend stream. This latter effect arises

because rent seeking exposes passive agents to too much risk relative to the expected ben-

efits, and lowers their expected utility from future consumption. In turn, then, innovation

and competition may worsen income inequality (Jones and Kim, 2018).

These results are consistent with existing empirical observations. Innovation and top

income inequality in developed countries tend to follow a parallel evolution. According to

Aghion et al. (2015), 11 out of the 50 wealthiest individuals across US in 2015 “are listed

as inventors in a US patent and many more manage or own firms that patent.”

4.3 Dynamic Experimentation

So far, we have assumed that the decision to experiment is made only once, at t = 0. In

reality, however, innovation is not a one-time decision, but often occurs in waves (e.g.,

Gort and Klepper, 1982). We return to the socially optimal case of Section 2.1 and

consider that the agent can choose the experimentation level Xt at any time t, in order to

maximize her expected lifetime utility.24 Thus, she can alter the level of experimentation

24We were unable to solve a model in which multiple agents dynamically experiment and compete
in the market. We leave this as an interesting open question for future research and analyze here the
implications of dynamic experimentation in the representative agent setting.
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dynamically and retains the option to expand or abandon her investment at every instant.

The agent’s expected lifetime utility of consumption J satisfies the following partial

differential equation at any time t:

0 = max
X

[
e−ρt

δ1−γ
t

1− γ
+ LJ(δt, β̂t, νt, t)

]
, where LJ =

E[dJ ]

dt
, (63)

with boundary condition Ja(δT , β̂T , νT , T ) = 0 and subject to Xt ≥ 0, ∀t. We assume

that c = 0 for simplicity. In equilibrium, the CRRA utility conjecture J(δt, β̂t, νt, t) =

e−ρtδ1−γ
t P(β̂t, νt, t)/(1− γ) results in a partial differential equation for the price-dividend

ratio P(·), which we relegate to Appendix A.13 for the sake of brevity. The optimal level

of experimentation then follows from the first order condition on Xt.

Proposition 11 If the problem (63) has an interior maximum, then the optimal level of

experimentation at time t solves

X∗t =
β̂t − γkσ2

γk2σ2
+

νt
γk2σ2

(
Pβ
P
− X∗t νt

(γ − 1)σ2(1 + kX∗t )3

Pββ − 2Pν
P

)
. (64)

The solution (64) constitutes an implicit form since the control Xt appears on the

right hand side of the equation. Nevertheless, it highlights two main components of the

optimal level of experimentation. The first is a mean-variance component which increases

when the agent expects a higher growth for the new technology β̂t and decreases with

the risk aversion coefficient and the disturbance parameter k. The second is a hedging

component, which vanishes when there is no uncertainty about the new technology. This

term results from agent’s desire to hedge variations in the filter β̂t but also from agent’s

ability to exert control through her experimentation choice on the evolution of β̂t and νt.

Impact of dynamic experimentation on the real economy Dynamic experimen-

tation provides the agent with an additional option to abandon the new technology at

any point in the future, which results in more aggressive experimentation than in the

static case. Although this additional option is an improvement in agent’s set of choices,

it can have adverse consequences on the economy. A primary consequence pertains to

the volatility of aggregate consumption, which in the dynamic case evolves stochastically

with X∗t . Experimentation, thus, may amplify the volatility of consumption through the

observer effect that it imposes on the economy.

Furthermore, the abandonment option embedded in dynamic experimentation has the

power to decide the future of a new technology. This is best illustrated by the example
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Figure 8: Experimentation and the Abandonment of a New Technology. Panel
(a) shows a simulated path of consumption over 252 days. Panel (b) shows agent’s optimal
experimentation choice, X∗t , given the observed history of consumption (the red dashed
line shows the optimal experimentation level in the static case of Section 2). Panel (c)

shows the filter β̂t which results from the agent’s updating. The calibration used for
this figure is only illustrative and is different than for the rest of the paper to improve
numerical accuracy: γ = 1.2, f̄ = 0.1, β̂0 = 0.3, ν0 = 0.15, σ = 0.2, k = 2, ρ = 0.05,
δ0 = 1, and T = 1.

in Figure 8, where we consider a situation in which the agent stops experimenting just

because an unusually bad stream of consumption has occurred. In this example, the agent

starts with a positive prior β̂0 > 0, which also happens to be equal to the true β. As such,

this is a perfectly viable technology that can improve agent’s welfare if adopted. However,

lack of perfect knowledge about its productivity and learning by doing leads the agent to

conclude after the unusually strong downward trend observed in the left panel that the

technology is not productive. In the middle panel, the agent stops experimenting after

about 200 days. This also stops the learning process: in the right panel, the estimated β̂t

remains constant at a relatively low value once experimentation stops.

Asset Prices with Dynamic Experimentation Proposition 11 shows that in the

dynamic case the optimal experimentation level fluctuates as new information becomes

available and affects the agent’s expectations. This has further impact on asset prices

in the economy. We relegate asset pricing details to Appendix A.13 and directly discuss

here the implications of dynamic experimentation on asset pricing quantities.

Figure 9 compares the optimal level of experimentation, the risk premium and the

volatility in the static case (solid lines) versus the dynamic case (dashed lines), as functions

of the filter β̂t. When the filter β̂0 is sufficiently low, neither the “static” or the “dynamic”
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Figure 9: Static Versus Dynamic Experimentation. The three panels depict the
optimal level of experimentation, the risk premium and the volatility of asset returns
with static experimentation (solid lines) versus dynamic experimentation (dashed lines).

The panels plot functions of the prior β̂0. The parameters are the same as in Figure 8.

agent decide to experiment, as shown in panel (a). When experimentation is positive, the

“dynamic” experimenter allocates more capital to the new technology than the “static”

experimenter for any level of β̂t. This is because the dynamic experimenter always has the

option to stop or decrease later on. In contrast, the static experimenter is more cautious

when fixing an initial experimentation level.

The risk premium and the volatility are generally higher with dynamic experimentation

than with static experimentation, as shown in panels (b) and (c). The option to abandon

allows the dynamic experimenter to experiment more aggressively, which raises the risk

premium and volatility.

4.4 Competition in a Model with Recursive Preferences

In a final extension, we attempt to relax the assumption of isoelastic preferences employed

in Section 2. An unfortunate feature of standard isoelastic preferences is that, by imposing

equality between risk aversion and aversion to intertemporal substitution, they hide the

determinant role played by the elasticity of intertemporal substitution. In Appendix

A.14, we develop an alternative model with stochastic differential utility (Epstein and

Zin, 1989), which separates risk aversion from aversion to intertemporal substitution.

With stochastic differential utility, a log-linear approximation of the price-dividend

ratio is necessary to reach a solution (Restoy and Weil, 2010; Bansal and Yaron, 2004;

Beeler and Campbell, 2012; Benzoni, Collin-Dufresne, and Goldstein, 2011). We are able

to solve the alternative model using this approximation, and we show that it delivers qual-
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itatively similar results: 1) rent-seeking competition yields over-experimentation, which

in turn increases with the number of competitors in the economy; 2) technological un-

certainty generates over-valuation of the risky asset; and 3) this latter effect is further

exacerbated by competition.

When agents have recursive preferences, they are sensitive to long-run uncertainty

about consumption growth. Section 2 shows that our setup with experimentation creates

such uncertainty (which in our model is represented by technological uncertainty) and in-

serts a small but persistent component β̂t in the growth rate of consumption. In short, our

model endogenously creates long-run risks (Bansal and Yaron, 2004). A growing literature

initiated by Kung and Schmid (2015) and Kung (2015) provides equilibrium foundations

of long-run risk through innovation and R&D. In line with this literature, Appendix A.14

shows that the market price of risk in our version of the model with recursive utility in-

creases with technological uncertainty. Intense levels of competition and experimentation

further exacerbate this. While our main observations (over-experimentation and over-

valuation caused by Schumpeterian competition) remain valid in this model extension,

competition and its effect on experimentation increase long-run risks. An important av-

enue for future research is the characterization of the interaction between Schumpeterian

competition, experimentation through learning by doing, and long-run risk.

The Epstein-Zin framework further highlights the role of the elasticity of intertemporal

substitution (EIS) in our results. Specifically, the value of EIS dictates how technological

uncertainty affects the quantity of risk (the volatility of stock returns). For a parameter

EIS higher than one (consistent with the calibration of the long-run risk literature, e.g.,

Bansal and Yaron, 2004), technological uncertainty magnifies stock return volatility; the

opposite occurs when the EIS is lower than one.25 These results point to a potentially

important role played by the EIS (or the variation of it) during technological revolutions.

5 Conclusion

This paper proposes a risk-return perspective on Schumpeter (1934)’s evolutionary eco-

nomics ideas. Using a rent-seeking game in which agents compete for a share of the

consumption stream, we study how competition affects risk, wealth, and prices.

Risk arises from various sources. First, the new technology disrupts existing assets,

making their future use uncertain. The second source of risk is technological uncertainty,

25Empirical studies disagree about reasonable values for the EIS: EIS is greater than one in Vissing-
Jørgensen and Attanasio (2003), or smaller than one in Campbell (1999); Vissing-Jørgensen (2002).

40



which naturally arises when agents adopt and experiment with new ways of doing things.

Agents’ choice to experiment with the new technology creates both sources of risks, and

competition for consumption share magnifies them.

What we learn from the model is that the agents’ actions also affect the duration of the

consumption stream, that is, the weighted-average maturity of wealth. Higher wealth du-

ration in our model exposes agents to more technological uncertainty. As experimentation

with the new technology grows, wealth duration increases. Because of agents’ hedging

motives, a complementarity between wealth duration and technological uncertainty de-

creases systematic risk and the risk premium. Sufficiently intense competition can lead to

a negative risk premium, but this effect is transient due to learning. Eventually, as agents

learn more about the new technology, the risk premium becomes positive and reflects

mainly the persistent disruption risk that agents bear when they hold the risky asset.

Finally, not all agents in the economy benefit from the new technology: in the model,

passive agents are missing the rewards of the new technology and their welfare decreases

monotonically when an increasing number of active agents fight for a share of the pie.

Thus, Schumpeterian competition can worsen income inequality.
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A Appendix

A.1 Intratemporal Choice and Expenditure Shares

Consider the intratemporal (within period and across goods) choice of the agent at any time
t ∈ [0, T ]. Define the numéraire as δt and let pSt (pEt ) denote the price of the status-quo
(experimental) good. Thus

δt = pSt δ
S
t + pEt δ

E
t . (A.1)

Given an equilibrium level of experimentation X, the expenditure shares pSt δ
S
t and pEt δ

E
t are

determined by the following maximization problem subject to (A.1):

max
δSt ,δ

E
t

[
δSt
(
δEt
)X]1−γ

1− γ
. (A.2)

Solving for δEt in (A.1) yields δEt = (δt − pSt δSt )/pEt . Replacing this into (A.2) and taking
the first-order condition with respect to δSt yields pSt δ

S
t = δt/(1 +X). Thus, the agent spends a

fraction 1/(1 +X) on the status-quo good and a fraction X/(1 +X) on the experimental good.

A.2 Proof of Proposition 1

The proof of Proposition 1 follows from direct application of standard filtering theory:

Theorem A.1 (Liptser and Shiryaev, 2001, theorem 12.1, p. 22) Let (θ, ξ) = (θt, ξt),
0 ≤ t ≤ T , be a continuous random diffusion-type, conditionally Gaussian process with:

dθt = [a0(t, ξ) + a1(t, ξ)θt]dt+ b1(t, ξ)dW1(t) + b2(t, ξ)dW2(t), (A.3)

dξt = [A0(t, ξ) +A1(t, ξ)θt]dt+B(t, ξ)dW2(t), (A.4)

where W1 and W2 are mutually independent standard Brownian motions. If conditions (11.4)-
(11.8) and (12.16)-(12.18) in Liptser and Shiryaev (2001) are satisfied and the conditional

distribution P (θ0 ≤ a|ξ0) is Gaussian, N(m0, ν0), then the a posteriori mean mt = E(θt|Fξt ) and

the a posteriori variance νt = E[(θt −mt)
2|Fξt ] satisfy equations

dmt = [a0(t, ξ) + a1(t, ξ)mt]dt+
b2(t, ξ)B(t, ξ) + νtA1(t, ξ)

B2(t, ξ)
[dξt − (A0(t, ξ) +A1(t, ξ)mt)dt],

(A.5)

dνt
dt

= 2a1(t, ξ)νt + b21(t, ξ) + b22(t, ξ)−
(
b2(t, ξ)B(t, ξ) + νtA1(t, ξ)

B(t, ξ)

)2

, (A.6)

subject to the conditions m0 = E(θ0|ξ0), ν0 = E[(θ0 −m0)2|ξ0].

In the present setup, the unobservable variable is the constant β. Hence, a0 = a1 = b1 =
b2 = 0. The observable process is δt. Applying Itô’s lemma on ln δt yields

d ln δt =

[
f̄ + βX − c

2
X2 − 1

2
σ2(1 + k2X2 + 2kϕX)

]
dt+ σ

√
1 + k2X2 + 2kϕXdWt, (A.7)
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and thus

A0 = f̄ − c

2
X2 − 1

2
σ2(1 + k2X2 + 2kϕX), A1 = X, B = σ

√
1 + k2X2 + 2kϕX. (A.8)

Because a0, a1, b1, b2, A0, A1, and B are constants, all the conditions of Theorem A.1 are
satisfied. Direct application of (A.5) then yields

dβ̂t =
νtX

σ2(1 + k2X2 + 2kϕX)

[
d ln δt −

(
f̄ + β̂tX −

cX2

2
− σ2(1 + k2X2 + 2kϕX)

2

)
dt

]
(A.9)

=
νtX

σ2(1 + k2X2 + 2kϕX)

[
X(β − β̂t)dt+ σ

√
1 + k2X2 + 2kϕXdWt

]
(A.10)

=
νtX

σ
√

1 + k2X2 + 2kϕX

[
X(β − β̂t)

σ
√

1 + k2X2 + 2kϕX
dt+ dWt

]
︸ ︷︷ ︸

≡dŴt

. (A.11)

Eq. (A.11) defines dŴt as a shock proportional to the “surprise” change in consumption that
occurs in (A.9) in the square brackets. The division of this surprise by σ

√
1 + k2X2 + 2kϕX

in (A.11) ensures that Ŵt is a standard Brownian motion with respect to the agent’s filtration
{Fδt }. Eq. (A.6) further implies

dνt
dt

= − X2ν2
t

σ2(1 + k2X2 + 2kϕX)
. � (A.12)

A.3 Proof of Proposition 2

Part (a) of Proposition 2 Part (a) follows from the theory of affine processes (Duffie et al.,
2003). An application of Fubini’s theorem yields

U0(X) = E0

[∫ T

0
e−ρt

δ1−γ
t

1− γ
dt

]
=

1

1− γ

∫ T

0
e−ρtE0[δ1−γ

t ]dt. (A.13)

Note that the expectation E0[δ1−γ
t ] can be written as

E0[δ1−γ
t ] = E0

[
e(1−γ) ln δt

]
. (A.14)

The exponent in (A.14), (1 − γ) ln δt, is an affine function of the vector [ln δt β̂t]
′, whose

dynamics can be written under an affine form:[
d ln δt
dβ̂t

]
=

([
f̄ − 1

2σ
2(1 + k2X2 + 2kϕX)− c

2X
2

0

]
+

[
0 X
0 0

] [
ln δt
β̂t

])
dt+

[
σ
√

1 + k2X2 + 2kϕX
A(t)

]
dŴt,

(A.15)

where A(t) is a function of time that results from Proposition 1 and Eq. (13):

A(t) =
ν0Xσ

√
1 + k2X2 + 2kϕX

ν0X2t+ σ2(1 + k2X2 + 2kϕX)
. (A.16)
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Because the diffusion of β̂ depends on time, (A.15) is a time-inhomogeneous multi-factor
affine process (Filipović, 2005). Define:

K0 ≡
[
f̄ − 1

2σ
2(1 + k2X2 + 2kϕX)− c

2X
2

0

]
, (A.17)

K1 ≡
[
0 X
0 0

]
, (A.18)

H0(t) ≡
[
σ
√

1 + k2X2 + 2kϕX
A(t)

] [
σ
√

1 + k2X2 + 2kϕX
A(t)

]′
. (A.19)

Let t, s ∈ [0, T ] such that t ≤ s ≤ T , and define τ = s − t. In order to compute the
expectation Et[δ1−γ

s ] = Et[e(1−γ) ln δs ], we conjecture an exponential-affine solution of the form

Et
[
δ1−γ
s

]
= eα0(τ)+α1(τ) ln δt+α2(τ)β̂t , (A.20)

for some coefficient functions αj(·), j = 0, 1, 2, which satisfy[
α′1(τ)
α′2(τ)

]
= K>1

[
α1(τ)
α2(τ)

]
(A.21)

α′0(τ) = K>0

[
α1(τ)
α2(τ)

]
+

1

2

[
α1(τ) α2(τ)

]
H0(t)

[
α1(τ)
α2(τ)

]
, (A.22)

with boundary conditions α0(0) = 0, α1(0) = 1− γ, and α2(0) = 0. This is a system of Riccati
ordinary differential equations (Duffie et al., 2003). Eq. (A.21) has a straightforward solution:

α1(τ) = 1− γ (A.23)

α2(τ) = (1− γ)Xτ, (A.24)

which can be now inserted in the remaining Riccati equation (A.22):

α′0(τ) =
[
f̄ − 1

2σ
2(1 + k2X2 + 2kϕX)− c

2X
2 0

] [ 1− γ
(1− γ)Xτ

]
+

1

2

[
1− γ (1− γ)Xτ

]
H0(t)

[
1− γ

(1− γ)Xτ

]
,

(A.25)

leading to

α′0(τ) =
1

2
(γ − 1){−2f̄ + cX2 + σ2(1 + k2X2 + 2kϕX) + (γ − 1)[σ

√
1 + k2X2 + 2kϕX +XτA(t)]2}.

(A.26)

Replacing A(t) from (A.16) and t by s− τ yields

α′0(τ) =
1

2
(γ − 1)

[
−2f̄ + cX2 + σ2(1 + k2X2 + 2kϕX)

]
+

1

2
(γ − 1)2σ2(1 + k2X2 + 2kϕX)

(
σ2(1 + k2X2 + 2kϕX) +X2ν0s

σ2(1 + k2X2 + 2kϕX) +X2ν0(s− τ)

)2

,

(A.27)
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with boundary condition α0(0) = 0. Solving this equation by integration is straightforward
because only the last term depends on τ . Further using (13) to replace ν0 with a function of νt
yields a solution for α0 for any t, s ∈ [0, T ] with s ≥ t and τ = s− t:

α0(τ) =
1

2
(γ − 1)

[
−2f̄ + cX2 + γσ2(1 + k2X2 + 2kϕX)

]
τ +

1

2
X2νt(γ − 1)2τ2. (A.28)

Written at time 0 and with τ = t, the solution of the Riccati system (A.21)-(A.22) is

α0(t) =
1

2
(γ − 1)

[
−2f̄ + cX2 + γσ2(1 + k2X2 + 2kϕX)

]
t+

1

2
X2ν0(γ − 1)2t2, (A.29)

α1(t) = 1− γ, (A.30)

α2(t) = (1− γ)Xt, (A.31)

which can now be replaced into the conjecture (A.20). After multiplication with e−ρt, we obtain:

e−ρtE0

[
δ1−γ
t

]
= exp

[
−ρt+ α0(t) + α1(t) ln δ0 + α2(t)β̂0

]
(A.32)

= exp

[
(1− γ) ln δ0 + κ(X, β̂0)t+

(γ − 1)2X2ν0

2
t2
]
, (A.33)

where κ(X, β̂0) is defined as in (14):

κ(X, β̂0) ≡ (1− γ)

(
f̄ +Xβ̂0 − γ

σ2(1 + k2X2 + 2kϕX)

2
− c

2
X2

)
− ρ. (A.34)

Replacing (A.33) into (A.13) yields Eq. (15) of Proposition 2:

U0(X) =
δ1−γ

0

1− γ

∫ T

0
exp

[
κ(X, β̂0)t+

(γ − 1)2X2ν0

2
t2
]
dt. (A.35)

Part (b) of Proposition 2 Part (b) follows from standard asset pricing theory (Duffie,
2010); see also Appendix A.8. In this setup with time-additive utility, we define the stochastic
discount factor from the optimal consumption plan of the aggregate consumer as

ξt = e−ρt
u′(δt)

u′(δ0)
= e−ρt

δ−γt
δ−γ0

. (A.36)

The equilibrium price of the risky asset at time 0 is then

P0(X) = E0

[∫ T

0
ξtδtdt

]
= δγ0

∫ T

0
e−ρtE0[δ1−γ

t ]dt, (A.37)

and we recognize the same integral as in (A.13). Using (A.33), the price-dividend ratio is then

P0(X) =
P0(X)

δ0
=

∫ T

0
exp

[
κ(X, β̂0)t+

(γ − 1)2

2
X2ν0t

2

]
dt. (A.38)
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The following relation holds between expected lifetime utility and the price-dividend ratio

U0(X) =
δ1−γ

0

1− γ
P0(X). � (A.39)

A.4 Proof of Corollary 2.1

To prove Corollary 2.1, we write the lifetime utility under the following form:

U0(X) =
δ1−γ

0

1− γ

∫ T

0
ey(β̂0,ν0,X,t)dt, (A.40)

and consider the second partial derivative of the function y(β̂0, ν0, X, t) with respect to X,

∂2y(β̂0, ν0, X, t)

∂X2
= t(γ − 1)

[
c+ γσ2k2 + (γ − 1)ν0t

]
, (A.41)

which follows from taking the second derivative of the exponent in (A.38).
If γ > 1, the second derivative ∂2y/∂X2 is strictly positive ∀t ∈ (0, T ] ⇒ the function y

is strictly convex in X. Thus, ey is log-convex (Boyd and Vandenberghe, 2004, p. 104). Log-
convexity is preserved under sums and integrals (Boyd and Vandenberghe, 2004, p. 105-106) ⇒
if γ > 1 the integral

∫ T
0 ey(β̂0,ν0,X,t)dt, which represents the price-dividend ratio P0(X) as defined

in (A.38), is log-convex in X. Since a log-convex function is strictly convex, U0(X) =
δ1−γ
0

1−γ P0(X)
and γ > 1 imply that U0(X) is strictly concave in X. �

Log-convexity of P0(X) implies that the function ∂ lnP0(X)/∂X is increasing in X. This
result is important for the existence and uniqueness of an equilibrium level of experimentation
with competition (Proposition 4). More precisely, using Definition 1,

∂ lnP0(X)

∂X
=

1

P0(X)

∂P0(X)

∂X
=
∂κ(X, β̂0)

∂X
D0(X) + (γ − 1)2Xν0C0(X) (A.42)

= (1− γ)
[
β̂0 − γkσ2(ϕ+ kX)− cX

]
D0(X) + (γ − 1)2Xν0C0(X) (A.43)

= (1− γ)(β̂0 − γkϕσ2)D0(X) +X
[
(γ − 1)(γk2σ2 + c)D0(X) + (γ − 1)2ν0C0(X)

]
. (A.44)

Both D0(X) and C0(X) are weighted averages and thus their values are finite: D0(X) ∈
(0, T ] and C0(X) ∈ (0, T 2]. We can therefore find the limits of ∂ lnP0(X)/∂X at X = 0 and
X →∞. If X = 0 then ∂ lnP0(X)/∂X = (1− γ)(β̂0− γkϕσ2)D0(0). Furthermore, when γ > 1,

limX→∞
∂ lnP0(X)

∂X =∞, and thus ∂ lnP0(X)/∂X increases in X from (1− γ)(β̂0− γkϕσ2)D0(0)
to ∞ (a statement we make on page 16).

A.5 Proof of Proposition 3

In the first-order condition (20), compute

∂κ(X, β̂0)

∂X
= (1− γ)

(
β̂0 − γσ2k(ϕ+ kX)− cX

)
, (A.45)
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which, after replacement into (20) leads to

(β̂0 − γkϕσ2)D0(X) = X
[
(γk2σ2 + c)D0(X) + (γ − 1)ν0C0(X)

]
. (A.46)

This equation in X has a positive solution only if β̂0 > γkϕσ2, in which case the optimal
level of experimentation solves the following implicit equation:

X∗ =
(β̂0 − γkϕσ2)D0(X∗)

(γk2σ2 + c)D0(X∗) + (γ − 1)ν0C0(X∗)
. � (A.47)

A.6 Experimentation as a Mean-Variance Tradeoff

We will show here that the optimal level of experimentation in (21) results from a mean-variance
tradeoff, whereby the agent prefers higher expected future consumption at each t, {E0 [δt] , t ∈
(0, T ]}, and dislikes higher variance of future consumption at each t, {Var0 [δt] , t ∈ (0, T ]}.

The expectation E0 [δt] is computed using the same method as in Appendix A.3, with the
sole difference that the boundary conditions for the Riccati system (A.21)-(A.22) are α0(0) = 0,
α1(0) = 1, and α2(0) = 0. This yields

E0 [δt] = δ0 exp

[(
f̄ +Xβ̂0 −

c

2
X2
)
t+

X2ν0

2
t2
]
. (A.48)

The variance Var0 [δt] is

Var0 [δt] = E0

[
δ2
t

]
− (E0 [δt])

2, (A.49)

where (using the same method as in Appendix A.3, with the sole difference that the boundary
conditions for the Riccati system (A.21)-(A.22) are α0(0) = 0, α1(0) = 2, and α2(0) = 0):

E0

[
δ2
t

]
= δ2

0 exp

[
2

(
f̄ +Xβ̂0 −

c

2
X2 +

σ2(1 + k2X2 + 2kϕX)

2

)
t+ 2X2ν0t

2

]
, (A.50)

and thus

Var0 [δt] = E0 [δt]
2 (exp

[
σ2(1 + k2X2 + 2kϕX)t+X2ν0t

2
]
− 1
)
. (A.51)

The expected lifetime utility, after replacing κ(X, β̂0) from (14), is

U0(X) =

∫ T

0

e−ρtδ1−γ
0

1− γ
exp

[
(1− γ)

(
f̄ +Xβ̂0 − γ

σ2(1 + k2X2 + 2kϕX)

2
− c

2
X2

)
t+

(γ − 1)2X2ν0

2
t2
]
dt

(A.52)

=

∫ T

0
e−ρt

E0 [δt]
1−γ

1− γ
(
exp

[
σ2(1 + k2X2 + 2kϕX)t+X2ν0t

2
]) 1

2
γ(γ−1)

dt (A.53)

=

∫ T

0
e−ρt

E0[δt]
1−γ

1− γ

(
Var0 [δt]

E0[δt]2
+ 1

) 1
2
γ(γ−1)

dt, (A.54)

where the last equality follows from (A.51). It is straightforward to verify that, for any value of
γ > 0, (A.54) strictly increases with E0[δt] and strictly decreases with Var0 [δt].

54



The agent’s experimentation choice X impacts both E0 [δt] and Var0 [δt]. Eqs. (A.48) and
(A.51) imply that, at X = 0, both E0 [δt] and Var0 [δt] strictly increase with X, consistent with
the idea that adopting a new technology increases expected growth, but also makes the future
more risky. Thus, when choosing the amount of experimentation, the risk-averse agent trades off
a higher path of expected consumption against a higher path of variance of future consumption,
consistent with a classic mean-variance tradeoff (Markowitz, 1952).

A.7 Proof of Proposition 4

We begin by showing that the equilibrium cannot involve all agents i ∈ {1, . . . , n} choosing
xi = 0 and sharing the dividend stream equally as in (23). Suppose all other agents besides
agent j choose xi = 0. Based on (23), if agent j chooses xj = ε > 0, θj = 1. Even for arbitrarily
small ε (i.e., ε → 0), agent j gains the entire consumption stream δt. Since this represents a
discrete jump in agent j’s payoff, there exists a sufficiently small ε for which the agent’s gain from
the discrete jump dominates any continuous change in U0 (

∑n
i=1 xi), and thus it is a profitable

deviation. So, the equilibrium cannot involve xi = 0 for all i ∈ {1, . . . , n}.
The rest of the proof starts from (29):

(γ − 1)(n− 1)

Xn
=
∂ lnP0(Xn)

∂Xn
. (A.55)

As discussed in the text and in Appendix A.4, when n ≥ 2 this equation in Xn has a unique
positive solution. On the right-hand side of (A.55), we have

∂ lnP0(Xn)

∂Xn
=

1

P0(Xn)

∂P0(Xn)

∂Xn
=
∂κ(Xn, β̂0)

∂Xn
D0(Xn) + (γ − 1)2Xnν0C0(Xn) (A.56)

= (1− γ)
[
β̂0 − γkσ2(ϕ+ kXn)− cXn

]
D0(Xn) + (γ − 1)2Xnν0C0(Xn) (A.57)

= (1− γ)(β̂0 − γkϕσ2)D0(Xn) +Xn

[
(γ − 1)(γk2σ2 + c)D0(Xn) + (γ − 1)2ν0C0(Xn)

]
, (A.58)

and thus (A.55) yields

n− 1

Xn
+ (β̂0 − γkϕσ2)D0(Xn) = Xn

[
(γk2σ2 + c)D0(Xn) + (γ − 1)ν0C0(Xn)

]
, (A.59)

which leads to Eq. (30):

X∗n =
(β̂0 − γkϕσ2)D0(X∗n) + n−1

X∗
n

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0C0(X∗n)
. (A.60)

When n = 1, we are back to the one-agent economy and we recover the social optimum
of Proposition 3. Since the left-hand side of (A.55) strictly increases in n, the equilibrium X∗n
strictly increases in n and X∗n > X∗, ∀n ≥ 2 (see panel (a) of Figure 1 for an illustration).

We provide here another proof of the result that X∗n increases with n (argument used in the
text after Proposition 4.) The equilibrium Xn in an economy with n agents solves:

(γ − 1)(n− 1)

X∗n
=

1

U0(X∗n)

∂U0(X∗n)

∂X∗n
. (A.61)
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Using the fact that U0(X∗n) takes strictly negative values when γ > 1, we obtain

∂U0(X∗n)

∂X∗n
=

(γ − 1)(n− 1)

X∗n
U0(X∗n) < 0. (A.62)

Consider an economy with n+ 1 agents. For any agent i, a marginal increase in xi changes
U i0(x1, ..., xn+1) by (this is the equivalent of (26), written here for n+ 1 agents):

∂U i0(x1, ..., xn+1)

∂xi
=

(1− γ)(Xn+1 − xi)
xiXn+1

θ1−γ
i U0(Xn+1) + θ1−γ

i

∂U0(Xn+1)

∂Xn+1
. (A.63)

Assume now that the n+ 1 agents experiment at the level X∗n, that is, xj = X∗n/(n+ 1) for
all j. Replacing this into (A.63) and using (A.61) to replace ∂U0(X∗n)/∂X∗n yields

∂U i0(x1, ..., xn+1)

∂xi
=

(1− γ)n

X∗n
θ1−γ
i U0(X∗n)− (1− γ)(n− 1)

X∗n
θ1−γ
i U0(X∗n) (A.64)

=
1− γ
X∗n

θ1−γ
i U0(X∗n) > 0. (A.65)

Getting back to (32),

U i0(x1, ..., xn+1) =

(
xi∑n+1
j=1 xj

)1−γ

U0(X∗n), (A.66)

in the economy with n+ 1 agents in which we start from the aggregate equilibrium Xn+1 = X∗n,
a marginal change in xi decreases the total pie U0(Xn+1) according to (A.62), but also increases
the consumption share xi/

∑n+1
j=1 xj . This latter effect dominates such that (A.65) is satisfied.

Thus, every agent has an incentive to increase her own experimentation from the level X∗n/(n+1)
so that in equilibrium the aggregate level of experimentation increases in n. �

A.8 Proofs of Propositions 5 and 6

Propositions 5 and 6 follow from standard asset pricing theory. In this setting, agents have
common knowledge about the underlying parameters, have a common prior about β, and the
aggregate consumption stream δ is publicly observable. Thus, agents have homogeneous beliefs.

The following Lemma characterizes the dynamic process for the stochastic discount factor
in an economy in which the aggregate level of experimentation is X∗n.

Lemma A.1 The stochastic discount factor, defined as ξt ≡ e−ρt(δt/δ0)−γ, follows

dξt
ξt

= −
[
ρ+ γ

(
f̄ + β̂tX

∗
n −

c

2
(X∗n)2

)
− γ(γ + 1)

2
σ2(1 + k2(X∗n)2 + 2kϕX∗n)

]
dt

− γσ
√

1 + k2(X∗n)2 + 2kϕX∗ndŴt.

(A.67)

The equilibrium risk-free rate and the market price of risk are given by

rft = ρ+ γ
(
f̄ + β̂tX

∗
n −

c

2
(X∗n)2

)
− γ(γ + 1)

2
σ2(1 + k2(X∗n)2 + 2kϕX∗n), (A.68)

ζ(X∗n) = γσ
√

1 + k2(X∗n)2 + 2kϕX∗n. (A.69)
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The proof follows standard results in asset pricing (Duffie 2010, Dumas and Luciano 2017,
Ch. 12, Munk 2013, Ch. 8). Assuming time-additive expected utility, the stochastic discount
factor is defined from the optimal consumption plan of the aggregate consumer as

ξt = e−ρt
u′(ct)

u′(c0)
. (A.70)

In our case agents consume fixed shares of the aggregate consumption and observe the
economy under the same filtration. Thus, they all share the same stochastic discount factor.
Given the CRRA assumption, the dynamics of ξ can then be expressed as in (A.67) by means
of Itô’s Lemma. The continuously compounded risk-free rate is the negative of the drift of the
stochastic discount factor, whereas the market price of risk is the negative of the diffusion of the
stochastic discount factor. This yields (A.68)-(A.69). �

Proof of Proposition 5 To prove Proposition 5, consider any agent i. In an economy with
n agents, agent i consumes a share θi of the aggregate consumption and thus her value function
written at time t and under an optimal policy follows from Proposition 2:

J(δt, β̂t, νt, t, θi, X
∗
n) =

e−ρt(θiδt)
1−γ

1− γ
P(β̂t, νt, t,X

∗
n), (A.71)

where P(β̂t, νt, t,X
∗
n), defined in (16) and written here at time t, is the price-dividend ratio:

P(β̂t, νt, t,X
∗
n) ≡

∫ T

t
exp

[
κ(X∗n, β̂t)(s− t) +

(1− γ)2

2
(X∗n)2νt(s− t)2

]
ds. (A.72)

Denote by W i
t the wealth of agent i at time t. Since the risk-free asset is in zero-net supply,

W i
t = θiδtP(β̂t, νt, t,X

∗
n) and J(W i

t , β̂t, νt, t,X
∗
n) can further be written:

J(W i
t , β̂t, νt, t,X

∗
n) =

e−ρt(W i
t)

1−γ

1− γ
P(β̂t, νt, t,X

∗
n)γ . (A.73)

From the analysis in Merton (1973) and Brennan (1998), agent i’s optimal portfolio demand
can then be written as (define πt(X

∗
n) as the risk premium and σP,t(X

∗
n) as the stock diffusion):

φt =
JWi

−JWiWiW i
t

πt(X
∗
n)

σP,t(X∗n)2
+

JWiβ̂

−JWiWiW i
t

Covt(dβ̂t, dPt/Pt)

Vart(dPt/Pt)
. (A.74)

To compute Covt(dβ̂t, dPt/Pt)/Vart(dPt/Pt), we need to characterize the equilibrium price of
the risky asset claim to aggregate consumption at time t, Pt, which equals Pt = δtP(β̂t, νt, t,X

∗
n).

Compute the following partial derivatives of the price-dividend ratio:

Pt ≡
∂P
∂t

= −1− κ(X∗n, β̂t)P(β̂t, νt, t,X
∗
n)− (1− γ)2(X∗n)2νtG(β̂t, νt, t,X

∗
n), (A.75)

P
β̂
≡ ∂P
∂β̂t

= (1− γ)X∗nG(β̂t, νt, t,X
∗
n), (A.76)

P
β̂β̂
≡ ∂2P
∂β̂2

t

= (1− γ)2(X∗n)2H(β̂t, νt, t,X
∗
n), (A.77)
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Pν ≡
∂P
∂νt

=
(1− γ)2

2
(X∗n)2H(β̂t, νt, t,X

∗
n), (A.78)

where we define the functions

G(β̂t, νt, t,X
∗
n) ≡

∫ T

t
(s− t) exp

[
κ(X∗n, β̂t)(s− t) +

(1− γ)2

2
(X∗n)2νt(s− t)2

]
ds (A.79)

H(β̂t, νt, t,X
∗
n) ≡

∫ T

t
(s− t)2 exp

[
κ(X∗n, β̂t)(s− t) +

(1− γ)2

2
(X∗n)2νt(s− t)2

]
ds. (A.80)

We can then write

JWi

−JWiWiW i
t

=
1

γ
and

JWiβ̂

−JWiWiW i
t

=
P
β̂

P
. (A.81)

Apply Itô’s lemma to Pt = δtP(β̂t, νt, t,X
∗
n),

dPt = δtP
dδt
δt

+ δtPβ̂dβ̂t + δtPνdνt + δtPtdt+
1

2

[
δtPβ̂β̂(dβ̂t)

2 + 2P
β̂
(dδt)(dβ̂t)

]
, (A.82)

to obtain the dynamics of the stock price:

dPt
Pt

= µP,tdt+ σP,t(X
∗
n)dŴt, (A.83)

with

µP,t ≡ f̄ + β̂tX
∗
n −

c(X∗n)2

2
− κ(X∗n, β̂t)−

1

P(β̂t, νt, t)
+ γ(1− γ)(X∗n)2νt

G(β̂t, νt, t,X
∗
n)

P(β̂t, νt, t,X∗n)
, (A.84)

σP,t(X
∗
n) ≡ σ

√
1 + k2(X∗n)2 + 2kϕX∗n + (1− γ)

(X∗n)2νt

σ
√

1 + k2(X∗n)2 + 2kϕX∗n

G(β̂t, νt, t,X
∗
n)

P(β̂t, νt, t,X∗n)
, (A.85)

where we recognize the wealth duration at time t, G(β̂t,νt,t,X∗
n)

P(β̂t,νt,t,X∗
n)

= Dt(X∗n). Getting back to (A.74):

φt =
1

γ

πt(X
∗
n)

σP,t(X∗n)2
+
P
β̂

P
X∗nνt

σ
√

1 + k2(X∗n)2 + 2kϕX∗nσP,t(X
∗
n)

(A.86)

=
1

γ

πt(X
∗
n)

σP,t(X∗n)2
+ (1− γ)

(X∗n)2νt

σ
√

1 + k2(X∗n)2 + 2kϕX∗nσP,t(X
∗
n)
Dt(X∗n). � (A.87)

Proof of Proposition 6 The equilibrium diffusion of stock returns has been determined in
(A.85). To obtain the risk premium as in (46), multiply the market price of risk from (A.69),
ζ(X∗n) = γσ

√
1 + k2(X∗n)2 + 2kϕX∗n, with σP,t(X

∗
n):

πt(X
∗
n) = γσ

√
1 + k2(X∗n)2 + 2kϕX∗n

[
σ
√

1 + k2(X∗n)2 + 2kϕX∗n + (1− γ)
(X∗n)2νt

σ
√

1 + k2(X∗n)2 + 2kϕX∗n
Dt(X∗n)

]
(A.88)

= γσ2(1 + k2(X∗n)2 + 2kϕX∗n)− γ(γ − 1)(X∗n)2νtDt(X∗n). � (A.89)
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A.9 Discretization of the Continuous-Time Setup

This appendix derives a discretization of our continuous-time setup (see Section 3.2).

δt+∆ = δte
[f̄+β̂tX∗

n− c2 (X∗
n)2− 1

2
σ2(1+k2(X∗

n)2+2kϕX∗
n)]∆+

√
∆σ
√

1+k2(X∗
n)2+2kϕX∗

nzt+∆ , (A.90)

β̂t+∆ = β̂t +
√

∆
X∗n

σ
√

1 + k2(X∗n)2 + 2kϕX∗n
νtzt+∆, (A.91)

νt+∆ = νt −
(X∗n)2ν2

t ∆

σ2(1 + k2(X∗n)2 + 2kϕX∗n)
, where zt+∆ ∼ i.i.d. N(0, 1) and ∆ = time step in years.

(A.92)

A.10 Appendix for Section 4.1 (Infinite Horizon)

Proof of Proposition 7 In the setup with obsolescence and infinite horizon, the unob-
servable variable, βt, is now time-varying according to (48). Hence, in Theorem A.1, a0 = 0,
a1 = −λ, and b1 = b2 = 0. The observable process is δt. Applying Itô’s lemma on ln δt yields

d ln δt =

[
f̄ + βtX −

c

2
X2 − 1

2
σ2(1 + kX)2

]
dt+ σ(1 + kX)dWt, (A.93)

and thus

A0 = f̄ − c

2
X2 − 1

2
σ2(1 + kX)2, A1 = X, B = σ(1 + kX). (A.94)

Because a0, a1, b1, b2, A0, A1, and B are constants, all the conditions of Theorem A.1 are
satisfied. Direct application of (A.5) then yields

dβ̂t = −λβ̂t +
νtX

σ(1 + kX)
dŴt, (A.95)

where Ŵt is a standard Brownian motion with respect to the agent’s filtration {Fδt }.
Eq. (A.6) further implies

dνt
dt

= −2λνt −
X2ν2

t

σ2(1 + kX)2
, (A.96)

whose solution is Eq. (53) in the text. �

Proof of Proposition 8 We follow the same steps as in the proof of Proposition 2. The
expected lifetime utility is defined in (A.13). We now compute the expectation E0[δ1−γ

t ]. Write[
d ln δt
dβ̂t

]
=

([
f̄ − 1

2σ
2(1 + kX)2 − c

2X
2

0

]
+

[
0 X
0 −λ

] [
ln δt
β̂t

])
dt+

[
σ(1 + kX)

A(t)

]
dŴt, (A.97)

where A(t) is a function of time that results from Proposition 7 and Eq. (53):

A(t) =
2λν0Xσ(1 + kX)

(e2λt − 1)ν0X2t+ 2λe2λtσ2(1 + kX)2
. (A.98)
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Define:

K0 ≡
[
f̄ − 1

2σ
2(1 + kX)2 − c

2X
2

0

]
, (A.99)

K1 ≡
[
0 X
0 −λ

]
, (A.100)

H0(t) ≡
[
σ(1 + kX)

A(t)

] [
σ(1 + kX)

A(t)

]′
=

[
σ2(1 + kX)2 σ(1 + kX)A(t)
σ(1 + kX)A(t) A(t)2

]
. (A.101)

Let t, s ∈ [0, T ] such that t ≤ s ≤ T , and define τ = s − t. In order to compute the
expectation Et[δ1−γ

s ] = Et[e(1−γ) ln δs ], we conjecture an exponential-affine solution of the form

Et
[
δ1−γ
s

]
= eα0(τ)+α1(τ) ln δt+α2(τ)β̂t , (A.102)

for some coefficient functions αj(·), j = 0, 1, 2, which satisfy (A.21)-(A.22) with boundary con-
ditions α0(0) = 0, α1(0) = 1−γ, and α2(0) = 0. This is a system of Riccati ordinary differential
equations (Duffie et al., 2003). The solution of (A.21) is:

α1(τ) = 1− γ (A.103)

α2(τ) = (1− γ)X
1− e−λτ

λ
, (A.104)

which can be now inserted in the remaining Riccati equation (A.22). After replacing A(t) from
(A.98) and t by s − τ , then further using (13) to replace ν0 with a function of νt, we obtain a
solution for α0 for any t, s ∈ [0, T ] with s ≥ t and τ = s− t:

α0(τ) =
1

2
(γ − 1)

[
−2f̄ + cX2 + γσ2(1 + kX)2

]
τ +

1

2
X2νt(γ − 1)2

(
1− e−λτ

λ

)2

. (A.105)

Written at time 0 and with τ = t, the solution of the Riccati system (A.21)-(A.22) is

α0(t) =
1

2
(γ − 1)

[
−2f̄ + cX2 + γσ2(1 + kX)2

]
t+

1

2
X2ν0(γ − 1)2

(
1− e−λt

λ

)2

, (A.106)

α1(t) = 1− γ, (A.107)

α2(t) = (1− γ)X
1− e−λt

λ
, (A.108)

and we notice that taking the limit λ→ 0 yields the baseline case solution (Proposition 2). After
replacing this solution into the conjecture (A.102) and multiplication with e−ρt, we obtain:

e−ρtE0

[
δ1−γ
t

]
= exp

[
(1− γ) ln δ0 + κ(X, β̂0, t) +

(γ − 1)2X2ν0

2

(
1− e−λt

λ

)2
]
, (A.109)

where κ(X, β̂0, t) is now defined as in (54):

κ(X, β̂0, t) ≡
[
(1− γ)

(
f̄ − c

2
X2 − γ σ

2(1 + kX)2

2

)
− ρ
]
t+ (1− γ)β̂0X

1− e−λt

λ
. (A.110)
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Replacing (A.109) into (A.13) yields Eq. (55) of Proposition 8:

U0(X) =
δ1−γ

0

1− γ

∫ ∞
0

exp

[
κ(X, β̂0, t) +

(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2
]
dt. (A.111)

Part (b) of Proposition 8 follows from standard asset pricing theory, as in Proposition 2.
The equilibrium price-dividend ratio equals

P0(X) ≡
∫ ∞

0
exp

[
κ(X, β̂0, t) +

(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2
]
dt, (A.112)

and we also notice that

U0(X) =
δ1−γ

0

1− γ
P0(X). � (A.113)

Transversality condition We derive a necessary and sufficient condition for the expected
lifetime utility in (A.111) and the price-dividend ratio in (A.112) to be bounded. When λ > 0,
the term (1 − e−λt)/λ equals 1/λ as t → ∞. Given this, to obtain finite values for the utility
and price-dividend ratio, the exponent in (A.111)-(A.112),

κ(X, β̂0, t) +
(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2

, (A.114)

must reach −∞ as t→∞. Using the expression for κ(X, β̂0, t) in (A.110), we obtain

lim
t→∞

κ(X, β̂0, t) +
(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2

(A.115)

=

[
(1− γ)

(
f̄ − c

2
X2 − γ σ

2(1 + kX)2

2

)
− ρ
]
∞+

(1− γ)β̂0X

λ
+

(γ − 1)2X2ν0

2λ2
, (A.116)

which reaches −∞ only if (57) is satisfied:

(1− γ)

(
f̄ − c

2
X2 − γ σ

2(1 + kX)2

2

)
− ρ < 0. (A.117)

For similar transversality conditions in the existing literature, see Brennan and Xia (2001,
Theorem 1) and Dumas, Kurshev, and Uppal (2009, Lemma 6). �

Proof of concavity of expected lifetime utility Write (A.111) as

U0(X) =
δ1−γ

0

1− γ

∫ ∞
0

ey(β̂0,ν0,X,t)dt, (A.118)

and consider the second partial derivative of the function y(β̂0, ν0, X, t) with respect to X,

∂2y(β̂0, ν0, X, t)

∂X2
= (γ − 1)(c+ γσ2k2)t+ (γ − 1)2ν0

(
1− e−λt

λ

)2

> 0. (A.119)
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This implies that U0(X) is concave in X, following the same reasoning as in Appendix A.4.
It further implies that the price-dividend ratio is log-convex in X and thus ∂ lnP0(X)/∂X is
increasing in X. One can show that ∂ lnP0(X)/∂X increases from (1−γ)[β̂0DE0 (0)−γkσ2D0(0)]
to ∞ as X increases from 0 to ∞, an important result for the existence and uniqueness of an
equilibrium level of experimentation with competition (Proposition 9). �

Proof of Proposition 9 Any agent i’s lifetime expected utility, U i0, can be written as

U i0(x1, ..., xn) = E0

[∫ ∞
0

e−ρt
(θiδt)

1−γ

1− γ
dt

]
= θ1−γ

i U0

(∑n
j=1 xj

)
, (A.120)

where U0(·) is the function defined and characterized in Proposition 8.
To find the Nash equilibrium, write the first-order condition for agent i’s maximization

problem as

0 =
∂U i0(x1, ..., xn)

∂xi
=

(1− γ)(Xn − xi)
xiXn

θ1−γ
i U0(Xn) + θ1−γ

i

∂U0(Xn)

∂Xn
, (A.121)

which, after dividing by θ1−γ
i U0(Xn) and replacing U0(Xn) by

δ1−γ
0

1−γ P0(Xn), yields

(γ − 1)(Xn − xi)
xiXn

=
∂ lnP0(Xn)

∂Xn
. (A.122)

We rule out asymmetric equilibria using the same logic as in Section 2.2. In a symmetric
equilibrium, Xn solves

(γ − 1)(n− 1)

Xn
=
∂ lnP0(Xn)

∂Xn
. (A.123)

The equilibrium price-dividend ratio P0(X) is log-convex in X. This implies that the right-
hand side of (A.123) strictly increases in Xn. We have showed above that ∂ lnP0(Xn)/∂Xn

takes values from (1− γ)[β̂0DE0 (0)− γkσ2D0(0)], which is finite, to ∞ as X increases from 0 to
∞. When n ≥ 2, the left-hand side strictly decreases in Xn, taking values from ∞ to 0. Thus,
any equilibrium that satisfies (A.123) is unique, and Xn solves

X∗n =
β̂0DE0 (X∗n)− γkσ2D0(X∗n) + n−1

X∗
n

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0CE0 (X∗n)
, (A.124)

where DE0 (X), CE0 (X), and D0(X) are defined as

DE0 (X) =
1

P0(X)

∫ ∞
0

1− e−λt

λ
exp

[
κ(X, β̂0, t) +

(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2
]
dt, (A.125)

CE0 (X) =
1

P0(X)

∫ ∞
0

(
1− e−λt

λ

)2

exp

[
κ(X, β̂0, t) +

(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2
]
dt. (A.126)

D0(X) =
1

P0(X)

∫ ∞
0

t exp

[
κ(X, β̂0, t) +

(γ − 1)2

2
X2ν0

(
1− e−λt

λ

)2
]
dt. � (A.127)
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A.11 Alternative Setup with Learning from
{
δS, δE

}
When the agent learns from

{
δS , δE

}
, she perfectly observes dWt and therefore it is important

in this case to have ϕ 6= ±1, otherwise g is fully revealed. When X > 0, we have:

dδSt
δSt

=
(
f̄ − c

2
X2
)
dt+ σdWt, (A.128)

dδEt
δEt

=

(
g − k2σ2

2
X

)
dt+ kσ

(
ϕdWt +

√
1− ϕ2dWE

t

)
, (A.129)

which we can write

d ln δSt =

(
f̄ − 1

2
σ2 − c

2
X2

)
dt+ σdWt, (A.130)

d ln δEt =

[
g − 1

2
k2σ2(1 +X)

]
dt+ kσ

(
ϕdWt +

√
1− ϕ2dWE

t

)
, (A.131)

where g is unobservable. Learning about g is equivalent with learning about β (see (7)). Filtering
theory (Liptser and Shiryaev, 2001, theorem 12.7, p. 36) then implies:

dĝt =
νt

kσ
√

1− ϕ2
dŴE

t , with dŴE
t ≡ dWE

t +
g − ĝt

kσ
√

1− ϕ2
dt, (A.132)

dνt = − ν2
t

k2σ2(1− ϕ2)
dt. (A.133)

Thus, Proposition 1 becomes

dδt
δt

=
(
f̄ + β̂tX −

c

2
X2
)
dt+ σ(1 + ϕkX)dWt + kσX

√
1− ϕ2dŴE

t , (A.134)

dβ̂t =
νt

kσ
√

1− ϕ2
dŴE

t , (A.135)

dνt = − ν2
t

k2σ2(1− ϕ2)
dt. (A.136)

From here, everything follows as in the paper, with the main difference that the dynamics
of νt do not depend on the level of experimentation.

A.12 Appendix for Section 4.2 (Competition and Inequality)

Any agent i’s lifetime expected utility, U i0, can be written as

U i0(x1, ..., xn) = E0

[∫ T

0
e−ρt

(θiδt)
1−γ

1− γ
dt

]
= θ1−γ

i U0

(∑n
j=1 xj

)
, (A.137)
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where U0(·) is the function defined and characterized in Proposition 2 and θi is now defined as
in (60). The first-order condition for agent i’s maximization problem is

0 =
∂U i0(x1, ..., xn)

∂xi
=

(1− γ)(1 +Xn − xi)
xi(1 +Xn)

θ1−γ
i U0(Xn) + θ1−γ

i

∂U0(Xn)

∂Xn
, (A.138)

which, after dividing by θ1−γ
i U0(Xn) and replacing U0(Xn) by

δ1−γ
0

1−γ P0(Xn), yields

(γ − 1)(1 +Xn − xi)
xi(1 +Xn)

=
∂ lnP0(Xn)

∂Xn
. (A.139)

We rule out asymmetric equilibria using the same arguments as in Section 2.2. In a symmetric
equilibrium, Xn solves

(γ − 1)

(
n− 1

Xn
+

1

Xn(1 +Xn)

)
=
∂ lnP0(Xn)

∂Xn
. (A.140)

From Section 2.2, we know that the equilibrium price-dividend ratio P0(X) is log-convex
in X and that ∂ lnP0(Xn)/∂Xn takes values from (1 − γ)(β̂0 − γkσ2)D0(0), which is finite, to
∞. When n ≥ 2, the left-hand side strictly decreases in Xn, taking values from ∞ to 0. Thus,
any equilibrium that satisfies (A.140) is unique. Using (A.58), the equilibrium aggregate level
of experimentation solves (62), which is an implicit equation in Xn:

X∗n =
(β̂0 − γkσ2)D0(X∗n) + n−1

X∗
n

+ 1
X∗
n(1+X∗

n)

(γk2σ2 + c)D0(X∗n) + (γ − 1)ν0C0(X∗n)
. (A.141)

A.13 Appendix for Section 4.3 (Dynamic Experimentation)

A.13.1 Proof of Proposition 11

The dynamics of consumption with experimentation at time t now depend on Xt:

dδt
δt

= (f̄ + β̂tXt)dt+ σ(1 + kXt)dŴt, (A.142)

with

dβ̂t =
Xt

σ(1 + kXt)
νtdŴt, (A.143)

dνt = − X2
t

σ2(1 + kXt)2
ν2
t dt. (A.144)

Now that the agent can choose the experimentation level Xt at any time t, the agent’s
expected lifetime utility of consumption J satisfies the partial differential equation

0 = max
X

[
LJ(δt, β̂t, νt, t) + e−ρt

c1−γ
t

1− γ

]
, where LJ =

E[dJ ]

dt
, (A.145)

with boundary condition J(δT , β̂T , νT , T ) = 0 and subject to Xt ≥ 0, ∀t.
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In equilibrium consumption equals total output and therefore

0 = max
X

e−ρtδ1−γ
t

1− γ
+ Jt + δt(f̄ + β̂tX)Jδ +

X2ν2
t

2σ2(1 + kX)2
(Jββ − 2Jν) +

1

2
δ2
t σ

2(1 + kX)2Jδδ + δtνtXJδβ.

(A.146)

With CRRA utility, we make the usual conjecture

J(δt, β̂t, νt, t) = e−ρt
ρ1−γ
t

1− γ
P(β̂t, νt, t), (A.147)

and thus the partial differential equation (A.146) becomes

0 = max
X
Pt + κ(X, β̂t)P +

X2ν2
t

2σ2(1 + kX)2
(Pββ − 2Pν) + (1− γ)XνtPβ + 1, (A.148)

with boundary condition P(β̂T , νT , T ) = 0 and κ(X, β̂t) defined as in (14), with ϕ = 1 and c = 0.
The first order condition for X is

0 = κXP + (1− γ)νtPβ +
Xν2

t

(1 + kX)3σ2
(Pββ − 2Pν) (A.149)

= (γ − 1)
(
k(1 + kX)γσ2 − β̂t

)
P + (1− γ)νtPβ +

Xν2
t

(1 + kX)3σ2
(Pββ − 2Pν) (A.150)

This is a quartic equation in X, which we solve numerically for our illustrations in Section 4.3.
Re-arranging this equation yields Equation (64) in the text. �

A.13.2 Asset Prices with Dynamic Experimentation

Proposition A.12 In an economy with dynamic experimentation, the risk-free rate and the
market price of risk are given by

rft = ρ+ γ(f̄ +X∗t β̂t)−
1

2
γ(γ + 1)σ2(1 + kX∗t )2, (A.151)

ζ(X∗t ) = γσ(1 + kX∗t ), (A.152)

whereas the aggregate risk premium and the diffusion of stock returns are

πt(X
∗
t ) = γσ2(1 + kX∗t )2

(
1 +

X∗t νt
σ2(1 + kX∗t )2

Pβ
P

)
, (A.153)

σP,t(X
∗
t ) = σ(1 + kX∗t )

(
1 +

X∗t νt
σ2(1 + kX∗t )2

Pβ
P

)
(A.154)

Proof The stochastic discount factor follows

dξt
ξt

= −
(
ρ+ γ(f̄ +X∗t β̂t)−

1

2
γ(γ + 1)σ2(1 + kX∗t )2

)
dt− γσ(1 + kX∗t )dŴ δ

t , (A.155)

which yields the risk-free rate and the market price of risk from (A.151)-(A.152).

65



The stock price at time t is Pt = δtP(β̂t, νt, t). The major change in this case with respect
to the static case is that the dynamics of all state variables depend on the optimal level of
experimentation at time t, X∗t . The dynamics of the stock price can be written

dPt
Pt

=

(
f̄ +X∗t β̂t − κ(X∗t , β̂t)−

1

P
+ γX∗t νt

Pβ
P

)
dt+ σ(1 + kX∗t )

(
1 +

X∗t νt
σ2(1 + kX∗t )2

Pβ
P

)
dŴt,

(A.156)

from which we obtain the diffusion of stock returns. The risk premium is then given by

πt(X
∗
t ) = γσ2(1 + kX∗t )2

(
1 +

X∗t νt
σ2(1 + kX∗t )2

Pβ
P

)
. � (A.157)

A.14 Appendix for Section 4.4 (Recursive Preferences)

In this appendix, we consider an alternative setup in which agents derive utility from lifetime
consumption and have stochastic differential utility (Epstein and Zin, 1989) with subjective
discount rate β, relative risk aversion γ, and elasticity of intertemporal substitution ψ. The
indirect utility function of any agent i is

Ji,t = Et
[∫ ∞

t
h(Ci,s, Ji,s)ds

]
, (A.158)

where the aggregator h is defined as in Duffie and Epstein (1992):

h(Ci, Ji) =
β

1− 1/ψ

(
C

1−1/ψ
i

[(1− γ)Ji]1/φ−1
− (1− γ)Ji

)
, with φ ≡ 1− γ

1− 1/ψ
. (A.159)

All agents share the same preference parameters. We focus on the empirically relevant
case when the coefficient of risk aversion is higher than one. The reciprocal of the elasticity
of intertemporal substitution, 1/ψ, represents agents’ aversion to intertemporal substitution
(Restoy and Weil, 2010). If 1/ψ = 0, agents are indifferent to intertemporal substitution.
The coefficient φ measures the departure from the time-additive isoelastic framework: when
φ = 1 (i.e., when 1/ψ = γ), the preferences in (A.159) reduce to the standard CRRA utility
representation. When ψ > 1/γ, agents prefer early resolution of uncertainty.

A difference with our baseline setup, in addition to the different utility specification, is that
we consider here an infinite horizon problem. As we will show below, this will allow us to simplify
the setup by eliminating one state variable.

The dynamics of the aggregate output stream in the economy is (for simplicity of exposition,
we abstract away from opportunity costs):

dδt
δt

= (f̄ +Xµt)dt+ σdWt. (A.160)

where µ is unknown and plays the same role in β in (6). Because this is an infinite horizon
economy, a constant µ would eventually be learned in finite time and technological uncertainty
would be zero. To avoid this, we assume that µt has dynamics

dµt = λ(µ̄− µt)dt+ σµdW
µ
t , (A.161)
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with known parameters λ, µ̄, and σµ. Finally, we further simplify the setup to focus only on
technological uncertainty and assume that disruption risk is zero (k = 0).

As in Section 2, we define agents’ information filtration as {Fδt }, where Fδt = σ(δu : u ≤ t).
From agents’ viewpoint, this partially observed economy is equivalent to a perfectly observed
economy with

dδt
δt

= (f̄ +Xµ̂t)dt+ σdŴt, (A.162)

dµ̂t = λ(µ̄− µ̂t)dt+ σ̂µdŴt, (A.163)

where σ̂µ ≡ Xν̄/σ and dŴt ≡ dWt + X(µ−µ̂t)
σ dt represents the “surprise” component of the

change in total output. (Ŵt is a standard Brownian motion with respect to agents’ filtration
{Fδt }.) Using standard filtering results (Theorem A.1 in Appendix A.2), the posterior variance
of the estimated expected growth of the new technology (i.e., the technological uncertainty ν)
converges to a constant ν̄ that depends on the initial level of experimentation:

ν̄ =
σ
(√

λ2σ2 +X2σ2
µ − λσ

)
X2

≥ 0. (A.164)

As in the baseline setup, the representative agent’s problem is to choose a level of experi-
mentation that balances between expected growth gains and the imposed disturbance on future
consumption growth. Solving for the optimal level of experimentation in equilibrium involves
writing the Hamilton-Jacobi-Bellman (HJB) equation,

max
C,X
{h(C, J) + LJ} = 0, where LJ =

E[dJ ]

dt
. (A.165)

We guess the following value function (Benzoni et al., 2011):

J(δ, µ̂;X) =
δ1−γ

1− γ
[βP(µ̂;X)]φ , (A.166)

where P(µ̂;X) is the price-dividend ratio. The benefit of assuming a steady-state value for ν
(see, e.g., Dumas et al., 2009) is that the price-dividend ratio depends on one state variable
only, µ̂. This simplifies the approximation proposed below and allows us to show that our main
results continue to hold. The drawback is that this setup has no dynamic implications related
to time-variability in ν, such as Figure 3 in the baseline model.

Define the log price-dividend ratio:

I(µ̂;X) ≡ logP(µ̂;X). (A.167)

Substituting (A.166) into the HJB equation (A.165) and imposing the market clearing condition
C = δ yields the following ordinary differential equation for the log price-dividend ratio:

0 =
γ − 1

φ

[
−(f̄ +Xµ̂) +

γσ2

2

]
− β + e−I + [λ(µ̄− µ̂)− (γ − 1)σσ̂µ] Iµ̂ +

σ̂2
µ

2

(
Iµ̂µ̂ + φI2

µ̂

)
.

(A.168)
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To obtain an approximate solution for P(µ̂;X), we use the customary log-linear approxi-
mation of the price-dividend ratio (Restoy and Weil, 2010; Bansal and Yaron, 2004; Beeler and
Campbell, 2012; Benzoni et al., 2011):

P(µ̂;X) = eA(X)+B×Xµ̂. (A.169)

We have checked the accuracy of this approximation using an alternative solution method with a
high number of Chebyshev polynomials. The approximation (A.169) performed very well. Log-
linear approximations of long-run risk models do not always guarantee reliable results (Pohl,
Schmedders, and Wilms, 2018), but in our model with one state variable the approximation
remains very accurate.

We conjecture the following form for the coefficients A(X) and B:

P(µ̂;X) = exp
[
b(1− 1/ψ)

(
c0 + c1X −

c2

2
X2 +Xµ̂

)]
. (A.170)

This form results from a second-order approximation of A(X) around X = 0. When X = 0 the
price-dividend ratio is constant and the approximation is exact. A further justification for the
second-order approximation of A(X) results from the CRRA case: dividend strips (assets that
pay the aggregate consumption only at time s > t) have exactly the form in Eq. (A.170).26

Lemma A.2 If γ > 1, ψ > 1/γ, and ψ 6= 1, then b > 0.

Lemma A.2 follows from Restoy and Weil (2010, Eqs. (3.1) and (4.4)). As long as the risk
aversion is higher than one and agents have a preference for early resolution of uncertainty, the
sign of the coefficient b is unambiguously positive. Eq. (A.170) further implies that the price-
dividend ratio is convex in µ̂, meaning that technological uncertainty induces over-valuation of
the risky asset, as in our main setup (see Eq. (42) and its discussion).

The conjectured form (A.170) for the price-dividend ratio proves particularly convenient for
the identification of the equilibrium level of experimentation, both in the representative-agent
economy and in the economy with n agents.

Proposition A.13 (a) At t = 0, the representative agent chooses an optimal level of experi-
mentation that maximizes total welfare:

X∗ = max

[
1

c2
(c1 + µ̂0), 0

]
. (A.171)

(b) At t = 0, the aggregate level of experimentation in an economy with n competitors whose
shares of consumption are given by (23) is:

X∗n = max

[
1

c2

(
c1 + µ̂0 +

1

b

n− 1

X∗n

)
, 0

]
. (A.172)

Proof The proof follows the same steps as in Proposition 4, Section 2.2. �

26The second-order approximation of A(X) is necessary because it pins down the optimal level of ex-
perimentation (see Proposition A.13). Without a second order term, the optimal level of experimentation
is indeterminate (Devereux and Sutherland, 2011, make a similar argument in portfolio choice models).
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Comparing (a) with Proposition 3 and (b) with Proposition 4, the same results hold: there
exists a socially optimal level of experimentation that maximizes welfare; this level can only be
reached in the representative-agent economy. Competition generates over-experimentation, and
the aggregate level of experimentation increases with n. The economy with competition can
again generate experimentation with a sub-optimal technology, as in Section 2.2.

One disadvantage of the log-linear approximation (A.170) is that the coefficients, b, c1 and
c2, which dictate the equilibrium experimentation in Proposition A.13, do not clearly reveal the
impact of technological uncertainty. Our numerical results suggest that the coefficient c1 strongly
depends on the parameters σµ and λ, which control the amount of technological uncertainty ν̄
(see Eq. (A.164)). If σµ is high and/or λ is low, then c1 + µ̂0 can become negative and the active
agent is better off not experimenting (c2 is positive with our calibration).

Moving now to asset pricing, for any experimentation level X, the equilibrium risk premium
in the economy is given by (see Restoy and Weil, 2010, Eq. (4.6), for a similar decomposition):

πt(X) =

(
γσ + (γ − 1)

φ− 1

φ
bσ̂µX

)
︸ ︷︷ ︸

Market price of risk

×σ
(

1 +
ψ − 1

ψ

σ̂µ
σ
bX

)
︸ ︷︷ ︸

Quantity of risk

, (A.173)

and the equilibrium stock return diffusion (the “quantity of risk”) is

σP,t(X) = σ

(
1 +

ψ − 1

ψ

σ̂µ
σ
bX

)
. (A.174)

Before analyzing these quantities, note that when γ > 1, φ can take the following values:
φ ∈ [0, 1), if ψ ∈ [0, 1/γ)

φ ∈ [1,∞), if ψ ∈ [1/γ, 1)

φ ∈ (−∞, 1− γ), if ψ ∈ (1,∞) (Bansal and Yaron, 2004).

(A.175)

Over each one of the three intervals above, φ is a strictly increasing function in ψ. The first case
in (A.175) represents preference for late resolution of uncertainty. The next two cases represent
preference for early resolution of uncertainty, with the last case being the calibration of the
long-run risk model (Bansal and Yaron, 2004).

We will focus our discussion in a setting with γ > 1 and preference for early resolution of
uncertainty.

1. Case ψ ∈ [1/γ, 1) ⇒ φ ∈ [1,∞)

When the elasticity of intertemporal substitution is lower than one, the market price of
risk increases with technological uncertainty. (In comparison, in the main model with
CRRA utility, the market price of risk does not depend on technological uncertainty—see
Footnote 20.) The quantity of risk, however, decreases with technological uncertainty.
When competition is intense, high aggregate experimentation may generate a negative
risk premium, as in our main model (Figure 5).

2. Case ψ ∈ (1,∞) ⇒ φ ∈ [−∞, 1− γ)

When the elasticity of intertemporal substitution is higher than one, as in the typical
calibration of the long-run risk model (Bansal and Yaron, 2004), both the market price
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of risk and the quantity of risk strictly increase with technological uncertainty, and this
is further exacerbated for strong levels of experimentation. In this case, although the
risky asset remains over-valued due to technological uncertainty, the risk premium in the
economy always increases in experimentation.

These two cases highlight the important role played by the elasticity of intertemporal substi-
tution ψ for the behavior of the risk premium in this alternative setup with stochastic differential
utility. Empirical studies disagree about reasonable values for ψ. Some studies find ψ greater
than one (Vissing-Jørgensen and Attanasio, 2003), other studies find ψ smaller than one (Camp-
bell, 1999; Vissing-Jørgensen, 2002). While our main results related to over-experimentation and
over-valuation of the asset hold in both cases, the relationship between the risk premium and
technological uncertainty depends on the value of ψ.

To summarize, the main results in our paper are robust to an alternative utility function.
But the analysis is less transparent due to the approximation of the price-dividend ratio and
also because technological uncertainty is now constant, which prevents us to make statements
about the dynamics of asset prices in the aftermath of experimentation.

A.15 Analysis of the Case γ < 1

We have analyzed our main results under the assumption γ > 1. In this appendix, we show
that most of the results hold as long as γ 6= 1. When γ < 1, Propositions 2 and 3 remain valid,
but in this case agents prefer more uncertainty (see footnote 13), and thus uncertainty amplifies
experimentation. Competition continues to generate over-experimentation when γ < 1, and
the level of experimentation increases in n (as in Proposition 4), but proof of uniqueness is no
longer possible (when γ < 1, the agents’ expected lifetime utilities are not globally concave).
The results presented here are qualitatively similar to that of the case γ > 1, stronger in the
case γ < 1, because agents’ preference for uncertainty strengthens their incentives to experiment.
When γ < 1, technological uncertainty continues to imply asset over-valuation and a downward
average path for prices in the aftermath of experimentation, as in Figure 3, and negative return
predictability still obtains, as in Table 1. Proposition 6, however, yields a different result: when
γ < 1, the risk premium and the stock market volatility are now strictly increasing with the
level of experimentation.

Proposition 2 holds for any positive value of γ. The optimal level of experimentation, X∗,
is determined as in Proposition 3, but when γ < 1 the last term in the denominator of X∗

is negative, meaning that the agent likes uncertainty. This further amplifies our results and
increase the optimal level of experimentation relative to the case γ > 1.

The representative agent’s lifetime expected utility in (15) is positive when γ < 1 and it is
not strictly concave over its entire domain. The same holds for the expected lifetime utility of
any active agent i in the setup with competition in (24). Thus, uniqueness is not guaranteed.
Nevertheless, the aggregate level of experimentation is still determined as in Proposition 4. We
illustrate this in panels (a) and (b) of Figure 10, which use γ < 1 in the calibration and replicate
Figure 1 in the paper. The two panels confirm our main result that experimentation increases
with the number of competitors, as predicted by Proposition 4.

Panel (c) of Figure 10 depicts the risk premium as a function of aggregate experimentation
when γ < 1. In this case, the risk premium is strictly increasing in experimentation: agents now
hold positive hedging demands and according to (44) the risk premium increases in Ht(X∗n, νt).
(See also Proposition 6, where the last term in (46) now increases with experimentation.)
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Figure 10: Equilibrium Experimentation with Competition, the case γ < 1. Panel (a)
depicts the solution of (29), where the solid line represents the right-hand side and the dashed
(dotted) line represent the left-hand side for n = 2 (n = 5). Panel (b) depicts the aggregate
level of experimentation as a function of the number of agents in the economy. Panel (c) shows
the risk premium as a function of the aggregate experimentation level in the economy, similar
with Figure 5. Panel (d) is similar with panel (b) in Figure 3. The calibration used is: γ = 0.8,
f̄ = 0.03, β̂0 = 0.015, ν0 = 0.032, σ = 0.05, k = 3, ρ = 0.03, T = 100, c = 0.02, and δ0 = 1.

The over-valuation due to technological uncertainty holds when γ < 1. (The price-dividend
ratio in (42) is always convex in β; the sole exception is the log-utility case γ = 1, when the
price-dividend ratio is linear in β and there are no hedging demands.) Consequently, the result
that the asset price on average goes down after strong experimentation remains valid. Panel (d)
of Figure 10 depicts the average price paths after t = 0 in an economy with n = 5 competitors
and is similar with panel (b) in Figure 3. Thus, our model continues to generate negative return
predictability also in the case γ < 1, and Table 2 confirms. It presents results from simulated
data at quarterly frequency, as in Table 1. The two panels of the table compare the first-best
economy (X∗ = 0.314, see also Figure 10, panel (a)) with an economy with competition and
n = 5. Predictability is now present in both panels. We notice that average excess returns now
increase with competition, in line with the risk premium result in panel (a) of Figure 10.
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Social Optimum, X∗ = 0.314 (medians of 1,000 simulations)

4Q 12Q 20Q 40Q

Coefficient of Log (P/D) -1.126 -3.258 -5.752 -10.85

t-stat -1.939 -2.111 -2.371 -3.071

R-squared 0.028 0.082 0.138 0.268

Expected Excess Returns (annualized) abcdefgh 0.84% 0.72% 0.67% 0.50%

Competition, n = 5, X∗5 = 2.444 (medians of 1,000 simulations)

4Q 12Q 20Q 40Q

Coefficient of Log (P/D) -0.824 -2.265 -3.545 -6.653

t-stat -2.092 -2.335 -2.504 -3.219

R-squared 0.033 0.097 0.151 0.262

Expected Excess Returns (annualized) 7.1% 5.5% 3.6% 4.4%

Table 2: Return Predictability with the Price-Dividend Ratio (Simulations) when
γ < 1. This table is similar with Table 1 and reports the predictability of excess stock returns
with the log price-dividend ratio. The two panels correspond to the social optimum and to the
economy with n = 5 competitors. Both panels use a calibration with γ < 1 (see Figure 10).
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