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Abstract

We study an economy with incomplete information in which two agents are un-
certain and disagree about the length of business cycles. That is, the agents do not
question whether the economy is growing or not, but instead continuously estimate how
long economic cycles will last—i.e., they learn about the persistence of fundamentals.
Learning about persistence generates high and persistent stock return volatility mostly
during recessions, but also (to a smaller extent) during economic booms. Disagreement
among agents fluctuates and earns a risk premium. A clear risk-return tradeoff appears
only when conditioning on the sign and magnitude of disagreement. We confirm these
predictions empirically.
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1 Introduction

It is a common observation that financial asset prices and returns exhibit a strong business

cycle behavior. Risk premia and Sharpe ratios tend to rise during recessions (Ferson and

Harvey, 1991; Lustig and Verdelhan, 2012). Asset return volatility is time-varying and

predictable (Engle, 1982); it increases during recessions (Schwert, 1989), but also during

periods of rapid technological progress (Pastor and Veronesi, 2006). The risk-return tradeoff,

which states that greater risk demands greater return, is time-varying and its sign flips over

time (Rossi and Timmermann, 2011, 2015). So far, no consensus has been reached as to

which model can simultaneously explain all of these empirical regularities. The purpose of

this paper is to offer such a model.

We study a pure exchange economy with incomplete information in which two agents are

uncertain about the length of the business cycle. That is, agents do not question whether

the economy is growing or not—the usual learning exercise studied in the literature—but

instead continuously wonder how long economic cycles will last. For example, during the

Great Recession of 2007-08 there was no debate about whether there was an economic down-

turn, rather economists were uncertain and disagreed about when recovery would take place

(Reinhart and Rogoff, 2009; Howard, Martin, and Wilson, 2011; Bernanke, 2013). In this

paper, we show that learning about the persistence of economic growth differs from learning

about economic growth itself and helps account for a wide range of empirical observations

regarding financial asset prices and returns.

A first testable implication is that learning about persistence generates time-varying un-

certainty and persistent stock market volatility. The quantity responsible for this, which we

call structural uncertainty, is defined as the product of two variables: the uncertainty about

growth persistence and the difference between the growth rate and its long-term mean. In-

tuitively, structural uncertainty is a function of how much uncertainty is perceived by agents

and the degree to which the economy is in an expansion or contraction. This implies that

the way in which structural uncertainty impacts the price of risk, risk premia, and the

volatility of stock returns depends on the growth rate of the economy. When the economy

is going through recessions or booms, agents face significant structural uncertainty, which

increases stock return volatility. This is more severe during recessions, when bad news wors-

ens the agents’ forecasts of future growth and increases the persistence (riskiness) of future

shocks. We show that there exists a “hockey-stick”-shaped relationship between volatility

and economic growth that rationalizes the high levels of volatility observed particularly dur-

ing recessions (Schwert, 1989; Patton and Timmermann, 2010; Barinov, 2014), but also the

less severe levels of volatility during booms such as the Nasdaq bubble in the late 1990’s

(Pastor and Veronesi, 2006).
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Because agents use different sources of information to estimate the length of business

cycles, they exhibit time-varying disagreement about persistence in the economy. Based on

this, an additional quantity that affects asset prices, which we call structural disagreement,

is defined as the product of two quantities: the degree to which agents’ estimates of the

mean-reversion speed of the fundamental diverge from each other and the difference between

the fundamental and its long-term mean. Since structural disagreement is enhanced during

booms and recessions, this yields a second testable prediction: structural disagreement gen-

erates fluctuations in the agents’ consumption shares and thereby impacts the market price

of risk in the economy. When the economy goes through booms or recessions, structural

disagreement is large and the agent with the least favorable economic outlook perceives the

risky asset as a bad hedge against fluctuations in her consumption share. Consequently,

she requires a large risk premium for holding the risky asset. Through this mechanism,

structural disagreement induces fluctuations in the risk premium in the economy.

Taken together, these two predictions show that the risk-return tradeoff in our economy

crucially depends on the magnitude and the sign of structural disagreement (which, accord-

ing to the above definition, can be both positive and negative). Thus, the third testable

prediction of our model is that the risk-return tradeoff becomes apparent only when struc-

tural disagreement is taken into account. This can rationalize the inconclusive findings in

the literature about the sign and the significance of the relation between risk premium and

volatility (Glosten, Jagannathan, and Runkle, 1993; Brandt and Kang, 2004).

We test these predictions with S&P 500 returns and U.S. output growth data, from

which we build proxies for volatility, risk premium, structural uncertainty, and structural

disagreement. We find that indeed the volatility of stock returns features a hockey-stick

pattern, being higher in recessions. We then document a clear relationship between struc-

tural disagreement and the risk premium, as predicted by the model. Finally, we explore the

risk-return tradeoff and find that it is indeed dependent on the sign of structural disagree-

ment. Overall, these empirical results generally support our theoretical model of learning

and disagreement about the persistence of economic growth.

In addition to these results, our paper provides a theoretical foundation for GARCH. The

persistence of volatility has been described extensively in the empirical literature, but there

is a paucity of theoretical explanations.1 The explanation that we provide here is based on

structural uncertainty, which arises endogenously from learning about growth persistence.2

1A few preference-based foundations for volatility clustering are provided by Campbell and Cochrane
(1999), Barberis, Huang, and Santos (2001), and McQueen and Vorkink (2004). See also Osambela (2015).

2Timmermann (2001) shows that existence of structural breaks in the fundamental process induces volatil-
ity clustering. David (1997) and Veronesi (1999) show that, when the fundamental follows a Markov-
switching process, learning implies volatility clustering. A commonality between our work and theirs is that
agents have imperfect information about the economic model, although our model does not feature structural
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Finally, our work rationalizes the empirical findings in Carlin, Longstaff, and Matoba

(2014), who analyze how model disagreement in the MBS market affects asset prices. The

authors show that there is a risk premium associated with disagreement and that disagree-

ment varies over time. It appears that disagreement rises during periods of large market

movements, which is consistent with our idea of structural disagreement. We also show that

the type of disagreement that we are studying implies a particular pattern that is supported

by the data from analyst forecasts on real U.S. GDP growth. Specifically, because agents

agree on the fundamental today and have similar beliefs regarding its long-term value, dis-

agreement in the near future and in the long term is likely low. That is, the term structure

of disagreement is hump-shaped.

Our approach departs from the existing asset pricing literature in several ways. First,

instead of assuming that agents learn about the unobserved growth rate of the economy, we

propose a model whereby agents observe the growth rate but learn about its persistence. As

we show in the paper, this type of learning is associated with time-varying uncertainty, which

contrasts with learning models with similar structures3 and is empirically plausible (Jurado,

Ludvigson, and Ng, 2015).4 Furthermore, learning about persistence endogenously generates

higher volatility when the economy goes through booms and recessions, and induces an

asymmetric response to news in good versus bad times, features responsible for the hockey-

stick pattern in volatility. All endogenous quantities in our economy, including volatility and

risk premia, are now substantially driven by the level of economic growth and are higher

especially during recessions. This view is different from other models of learning in which

uncertainty is higher when agents perceive the economy to be “in-between” a discrete set of

growth states.5

Second, we depart from the usual modeling approach to study the effect of heteroge-

neous beliefs on asset prices. Typically, this literature assumes that agents agree to disagree

about the unobservable fundamental—the expected dividend growth—(e.g., Scheinkman and

Xiong, 2003; Dumas, Kurshev, and Uppal, 2009).6 Instead, we assume that the fundamental

breaks or a finite number of states. See also Collin-Dufresne, Johannes, and Lochstoer (2015), who show
that parameter learning generates long-lasting risks when a representative agent has a preference for early
resolution of uncertainty.

3Uncertainty is constant in most learning models, a common result in the broad literature of learning
(see Detemple, 1986; Gennotte, 1986; Dothan and Feldman, 1986; Brennan and Xia, 2001, among many
others). This arises because priors are Gaussian and all variables are normally distributed. In this case, the
conditional variance of the unobservable variable—the Bayesian uncertainty—follows a deterministic path
and converges to a steady state. Stochastic uncertainty arises with non-Gaussian distributions (see, for
instance, Detemple, 1991; David, 1997; Veronesi, 1999).

4See also Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014) and Bachmann,
Elstner, and Sims (2013).

5David (1997); Veronesi (1999, 2000); Cagetti, Hansen, Sargent, and Williams (2002); David and Veronesi
(2002); David (2008).

6See also Harris and Raviv (1993), Detemple and Murthy (1994), Kandel and Pearson (1995), Zapatero

4



is publicly observed and agreed upon at all times, but agents disagree about the parameters

of the model that govern its dynamics. This setup is motivated by recent empirical evidence

of model disagreement in MBS markets: Carlin et al. (2014) document substantial disagree-

ment among Wall Street mortgage dealers about prepayment speed forecasts, although all of

the dealers in the survey are large financial institutions having access to all publicly available

information and only very little private information.7

Our paper focuses on Bayesian (rational) learning and abstracts from other frictions

or behavioral biases. As such, our paper is complementary to earlier contributions in the

literature in which volatility clustering and other stylized facts about business cycles can

arise from heterogeneous beliefs coupled with liquidity constraints (Osambela, 2015), from

overconfidence and over-extrapolation (Alti and Tetlock, 2014), or from extrapolative biases

(Hirshleifer, Li, and Yu, 2015). As we explain in the paper, most of these features can enrich

and reinforce our main results.

The rest of the paper proceeds as follows. Section 2 defines our model and the learning

processes that the agents use, characterizes the market equilibrium, and shows how uncer-

tainty and disagreement affect asset prices. In Section 3, we calibrate the model, present our

main theoretical predictions, and test them empirically. Section 4 discusses further consider-

ations about the role played by disagreement, about the persistence of volatility, and about

agents’ survival in this economy. Section 5 concludes. The Appendix contains all proofs,

checks the accuracy of our numerical approximation, and describes our calibration exercise.

2 A Model of Disagreement and Uncertainty

Consider a pure exchange economy defined over a continuous-time horizon [0,∞), in which

a single consumption good serves as the numéraire. A single risky asset (the stock) pays the

aggregate output stream, δ, which follows the process

dδt = δtftdt+ δtσδdW
δ
t (1)

dft = λt(f̄ − ft)dt+ σf (ρdW
δ
t +

√
1− ρ2dW f

t ) (2)

dλt = κ(λ̄− λt)dt+ ΦdW λ
t , (3)

(1998), Basak (2000, 2005), Berrada (2006, 2009), Buraschi and Jiltsov (2006), Li (2007), David (2008),
Yan (2008), Xiong and Yan (2010), Cvitanic and Malamud (2011), Cvitanic, Jouini, Malamud, and Napp
(2011), Bhamra and Uppal (2013), Buraschi, Trojani, and Vedolin (2014), Buraschi and Whelan (2013),
Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2017), Osambela (2015), Baker, Hollifield, and Osam-
bela (2015), and Dumas, Lewis, and Osambela (2016).

7See also Patton and Timmermann (2010), Andrade, Crump, Eusepi, and Moench (2017).
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where W δ, W f , and W λ are three independent Brownian motions under the objective/true

probability measure P.

The expected output growth rate f , which we regard as the fundamental, mean-reverts

around its long-term mean f̄ at speed λ. The mean-reversion speed λ is assumed to fluctuate,

as described in (3). This process drives the length of recessions and expansions and can be

affected, for instance, by continuous technological change of the economic environment.8

The economy is populated by two agents, A and B, who trade with each other and derive

utility from consumption. Each agent chooses a consumption-trading policy to maximize her

expected lifetime utility

Ui = Ei
[∫ ∞

0

e−βt
c1−α
it

1− α
dt

]
, (4)

where β > 0 is the time discount rate, α > 0 is the relative risk aversion coefficient, and

cit denotes the consumption of agent i ∈ {A,B} at time t. The expectation in (4) depends

on agent i’s own perception of the economy. The parameters f̄ , σδ, σf , ρ, κ, λ̄, and Φ are

commonly known.

2.1 Learning and difference of beliefs

At all times, both agents observe the output δ and the fundamental f. The fundamental

can be interpreted as the average (median) forecast of the output growth rate among a large

survey of professional forecasters, observed and agreed upon by both agents.

Agents do not observe the mean-reversion speed λ and are therefore tasked with esti-

mating it. This feature distinguishes our model from previous work: in existing models, it is

assumed that agents do not observe the fundamental f and have heterogeneous beliefs about

it (e.g., Scheinkman and Xiong, 2003; Dumas et al., 2009).9 Here, both agents publicly ob-

serve f and its evolution with no disagreement, but try to estimate its mean-reversion speed

λ in order to predict the length of business cycles. The question that agents are facing is

how long booms or recessions will last before the economy moves back to its known long-

8The mean-reversion speed can become negative because it follows an Ornstein-Uhlenbeck process. The
calibration provided in Table 1, however, imply that the unconditional probability of a negative λt is
only 0.08%. This ensures that the fundamental is stationary. The stationarity properties of an Ornstein-
Uhlenbeck process with stochastic mean-reversion speed are discussed by Benth and Khedher (2016).

9Besides long-run behavior, there are other dimensions of parameter uncertainty analyzed in the literature,
such as tail events (Liu, Pan, and Wang, 2005) or regime changes (Ju and Miao, 2012). See Collin-Dufresne
et al. (2015) for a good survey of the literature. The mean-reversion speed λ, which is the focus of this
paper, has spawned serious interest and disagreement among practitioners and academics. It has been at
the center of understanding recoveries following economic crises (Reinhart and Rogoff, 2009; Howard et al.,
2011; Bernanke, 2013) and in studying long-term trends in economic growth (Beeler and Campbell, 2012;
Bansal, Kiku, and Yaron, 2012; Summers, 2014; Hamilton, Harris, Hatzius, and West, 2015).
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term growth rate f̄ . For instance, the issue during the Great Recession of 2007-08 was not

whether we were in recession—it was pretty clear we were—but how long it would last.

We introduce heterogeneity of beliefs by adopting the “difference-of-opinion” approach

(Harris and Raviv, 1993; Kandel and Pearson, 1995). More precisely, suppose that each

agent receives a different signal about λ:

dsAt = φdW λ
t +

√
1− φ2dWA

t (5)

dsBt = φdW λ
t +

√
1− φ2dWB

t , (6)

where WA and WB are two additional, independent Brownian motions. Agents do not learn

from each others’ behavior, i.e., they do not trust the information source of the other agent.

The parameter φ defines the level of divergence of opinion: if φ = 1, agents are in perfect

agreement and the setup reduces to a representative agent economy; if 0 < φ < 1, the two

signals are different and the agents will disagree about λ. If φ = 0, neither of the signals is

informative and therefore agents are again in perfect agreement.10

The filtered mean-reversion speed (filter) λ̂ and its posterior variance (uncertainty) γ

are such that λt is normally distributed with mean λ̂t and variance γt. Based on (1)-(6),

Bayesian learning implies:11

dζt =

(
ft −

1

2
σ2
δ

)
dt+ σδdŴ

δ
t (7)

dft = λ̂it(f̄ − ft)dt+ σfρdŴ
δ
t + σf

√
1− ρ2dŴ fi

t (8)

dλ̂it = κ(λ̄− λ̂it)dt+
γt

σf
√

1− ρ2
(f̄ − ft)dŴ fi

t + φΦdŴ si
t , (9)

where ζ ≡ log δ and Ŵ δ, Ŵ fi, and Ŵ si are independent Brownian motions under the prob-

ability measure of agent i ∈ {A,B}, as defined in Appendix A.1. Note that if 0 < φ < 1,

agents come up with different estimates of λ because of the last term in (9).

This learning exercise results in particular dynamics of the filter. First, its instantaneous

variance is directly driven by the fundamental. This is because agents are provided with

10If we were to consider a true/objective probability measure under which the signals sA and sB had,
in fact, zero correlation with λ, then our setup could also be interpreted as a model of overconfidence
(Scheinkman and Xiong, 2003): agents place infinite trust on their own signal (although in reality it is
pure noise) and completely distrusts other information. Then, an additional layer of heterogeneity can be
added by assuming different parameters φA and φB (Alti and Tetlock, 2014). In this case, each agent
perceives a distinct uncertainty about the future (typically, the uncertainty of the more over-confident agent
will be lower). Although this would provide further insights into the interaction between disagreement and
overconfidence, the addition of a state variable would unnecessarily complicate the exposition of our model.
We further discuss in Section 4.1 comparative statics with respect to the parameter φ.

11See Theorem 12.7 in Liptser and Shiryaev (2001) and Appendix A.1 for details.
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more accurate information about the mean-reversion speed when f̄ − f is large, as can be

seen from (8). Consequently, the filter features stochastic volatility, which is higher when

the fundamental is away from its long-term mean.

Second, the filter can exhibit regimes of positive or negative correlation with the funda-

mental. For example, if today the economy is in good times (i.e., ft > f̄) and agents observe

a positive change in the fundamental, then λ is likely to be small (i.e., the present boom is

likely to persist). Following the same intuition, if the economy is in bad times (i.e., ft < f̄)

and agents observe a positive change, then λ is likely to be large (i.e., the present recession

is likely to be short). Agents thus form extrapolative expectations : they regard unusual good

or bad past performance of the economy as indicators of a slow-moving economy, or as the

economy’s “new normal.”12

Both the above-mentioned properties of the filter—stochastic volatility and asymmetric

correlation—are endogenously generated from learning. This distinguishes our model from

standard learning-based models analyzed in the literature. For instance, when agents learn

about the level of an unobservable fundamental (e.g., Scheinkman and Xiong, 2003; Dumas

et al., 2009; Whelan, 2014; Dumas et al., 2016), the filter has constant volatility. This is

not the case in our setting: while the unobservable variable λ has constant volatility and

moves independently from other state variables, its estimate λ̂ features a U-shaped stochastic

volatility and an asymmetric correlation with the fundamental. Both these features, which

result endogenously from learning, will generate most of our results.

The Bayesian uncertainty γ follows the same dynamics for both agents

dγt
dt

= (1− φ2)Φ2 − 2κγt −
(f̄ − ft)2

σ2
f (1− ρ2)

γ2
t . (10)

When ft − f̄ 6= 0, fluctuations in the fundamental are informative about λ. This effect

is brought by the last term in (10), which causes uncertainty to change at every instant

and never converge to a constant.13 Learning about the persistence of the fundamental thus

endogenously generates fluctuating uncertainty, which makes it different from learning about

the fundamental: in the latter case, uncertainty converges rapidly to a constant steady state

12This extrapolative nature of learning is different from “extrapolation bias,” which refers to the tendency
to overweight recent events when making decisions about the future (Hirshleifer et al., 2015). It is also
different from “over-extrapolation,” which refers to the tendency to believe that a stochastic process is more
persistent than it actually is (Alti and Tetlock, 2014). In our case, both agents apply standard Bayesian
rules (Brennan, 1998) and do not overweight recent events or wrongly perceive a more persistent fundamental
process.

13For sufficiently high deviations of the fundamental, the uncertainty could decrease significantly. However,
once the first term on the right hand side of (10) dominates the two other terms, uncertainty is drifting up.
The process γ is therefore guaranteed to remain positive.
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(e.g., Dumas et al., 2009).14

The observable fundamental provides the link between the probability measures of the

two agents, PA and PB:

dŴ fA
t = dŴ fB

t +

(
λ̂Bt − λ̂At

) (
f̄ − ft

)
σf
√

1− ρ2
dt, (11)

where λ̂B − λ̂A is the difference in beliefs about persistence. Since each agent perceives the

economy under a different probability measure, the PA-expectation of any random variable

X can also be computed under PB by using the following relation

EA [X] = EB [ηX] , (12)

where the process η is the change of measure from PB to PA. Defining Ot as the observation

filtration at time t, the change of measure η satisfies

ηt ≡
dPA

dPB

∣∣∣∣
Ot

= e
− 1

2

∫ t
0

(
(λ̂Bt −λ̂At )(f̄−ft)

σf

√
1−ρ2

)2

ds−
∫ t
0

(λ̂Bt −λ̂At )(f̄−ft)

σf

√
1−ρ2

dŴ fB
s

, (13)

and thus has the following dynamics

dηt
ηt

= −

(
λ̂Bt − λ̂At

) (
f̄ − ft

)
σf
√

1− ρ2
dŴ fB

t . (14)

We recover the customary change of measure obtained in the learning/difference-of-beliefs

literature (e.g. Scheinkman and Xiong, 2003; Dumas et al., 2009; Whelan, 2014; Dumas et al.,

2016), with an important distinction. In our setup, it is the interaction between the demeaned

fundamental and the difference between agents’ filtered mean-reversion speeds that drives

the Radon-Nikodym derivative η. This interaction is absent in previous models, where η is

solely driven by the difference between agents’ filtered fundamentals.

Based on all the above considerations, we define two state variables particular to our

setup of learning and difference-of-beliefs.

Definition 1. The structural disagreement and the structural uncertainty in this

14Endogenously fluctuating uncertainty arises in other situations analyzed in the literature. As shown
in Veronesi (2000), when drift of fundamentals shifts between two unobservable states at random times,
uncertainty changes over time, being at its maximum when the probability of each of the two states is 0.5.
This generates a hump-shaped uncertainty. In Xia (2001), learning is a function of the current state variable
and thus uncertainty endogenously fluctuates over time.
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economy are defined as

D ≡ (f̄ − f)(λ̂B − λ̂A) (15)

U ≡ (f̄ − f)γ. (16)

These two state variables isolate the effects of disagreement and learning about the un-

observable mean-reversion speed. Intuitively, the structural disagreement D only matters

when the fundamental is away from its long-term mean; it is only then that agents’ views of

the economy differ through the change of measure η. Similarly, the structural uncertainty U
only matters when the fundamental is away from its long-term mean. To gain some intuition

on why this is the case, consider a simple Euler discretization of the fundamental process:

ft+1 = ft + λt(f̄ − ft) + εt+1. (17)

Because λt is unobservable, the one-step ahead forecast error is given by

ft+1 − Et[ft+1] = εt+1 + (λt − λ̂t)(f̄ − ft), (18)

which has two terms: the future random shock and the error arising from parameter uncer-

tainty. The magnitude of this latter term grows with the distance between the fundamental

and its long-term mean. In other words, uncertainty about the speed of mean-reversion λ

matters only when the growth rate of the economy is away from its long-term mean, offering

an intuitive justification of our notion of structural uncertainty.

To summarize, several features distinguish our incomplete information setup from previ-

ous work. First, the volatility of the filter is stochastic and increases when the fundamental

is away from its long-term mean. Second, the sign of the correlation between the filter and

the fundamental depends on economic conditions (negative in good times and positive in

bad times). Third, uncertainty endogenously fluctuates over time and never converges to a

constant. Finally, our model of learning generates two key quantities, structural disagree-

ment and structural uncertainty, that are highly dependent on the state of the economy

given by the value of the fundamental. As we describe below, all these features generate

novel, testable implications for asset prices.

2.2 Equilibrium asset prices

From now on, we choose to work under agent B’s probability measure PB, which we assume

coincides with the true probability measure P. That is, agent B has the correct beliefs.

Assuming that markets are complete, we follow Cox and Huang (1989) and solve for the

10



equilibrium using the martingale approach.15 The state-price density perceived by agent B,

ξB, satisfies

ξBt = e−βtδ−αt

[(
ηt
ΛA

)1/α

+

(
1

ΛB

)1/α
]α

(19)

=
1

ΛB

e−βtδ−αt ω−αBt , (20)

where ΛA and ΛB are the Lagrange multipliers associated with the static budget constraints

of agents A and B, and ωit ≡ cit/δt is the consumption share of agent i ∈ {A,B} at time

t.16 The consumption shares are functions of the change of measure ηt and their sum equals

one.

According to (20), agent B’s state-price density depends on the aggregate output δ but

also on her consumption share ωBt. That is, the agent cares not only about the aggregate

level of output (which would be the case in a representative agent economy), but also on

how much of the aggregate output she shares with agent A.

Proposition 1. The risk-free rate and the market price of risk perceived by agent B are:

rt = β + αft −
1

2
α(α + 1)σ2

δ +
1

2

α− 1

α

D2
t

σ2
f (1− ρ2)

ωAtωBt (21)

θBt =
(
ασδ

ωAt

σf
√

1−ρ2
Dt 0 0

)>
. (22)

Assuming that the coefficient of relative risk aversion α is an integer,17 the equilibrium price-

dividend ratio of the risky asset satisfies

St
δt

=
α∑
j=0

(
α

j

)
ωjAtω

α−j
Bt Fj(Zt), (23)

15Following Dumas et al. (2009) and Dumas et al. (2016), we add to the existing stock and the locally
risk-free asset a perpetual bond and two futures contracts whose underlyings are the information signals.
That is, futures contracts are used to hedge fluctuations in information signals. Although our entire analysis
abstracts from these three additional securities, they are needed to complete markets and therefore allow us
to follow the martingale approach.

16Derivations are provided in Appendix A.2.
17This assumption simplifies the calculus. To the best of our knowledge, it has been first pointed out by

Yan (2008) and Dumas et al. (2009). If the coefficient of relative risk aversion is real, the computations
can still be performed using Newton’s generalized binomial theorem. Bhamra and Uppal (2013) offer a
comprehensive analysis for all possible values of the risk aversion.
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where

Fj(Zt) ≡ EBt

[∫ ∞
t

e−β(u−t)
(
ηu
ηt

) j
α
(
δu
δt

)1−α

du

]
. (24)

The 4-dimensional vector of state variables, Z, is defined by Z ≡ [f, λ̂A, λ̂B, γ]>.

Proof. See Appendix A.2.

By inspection of (21) and (22), structural disagreement is a key driver of both the risk-

free rate and the market price of risk. The first three components in (21) form the usual

risk-free rate in a representative agent economy. First, the risk-free rate increases with the

discount factor β. Second, the risk-free rate increases with the fundamental f (in this case,

agents expect higher future consumption and hence lower future marginal utility; future

payments due to saving have lower value, which decreases the demand for the risk-free asset

and increases the equilibrium risk-free rate). Third, the risk-free rate decreases with the

volatility of aggregate output σδ (the higher the volatility, the more agents demand risk-free

payments and hence a lower risk-free rate is necessary to clear the market for borrowing and

lending).

The last term in (21) comprises an additional effect on the risk-free rate due to disagree-

ment. When the risk aversion coefficient is larger than one, both agents in this economy

expect a larger consumption share in the future under their own probability measure (see

Equation (67) in Appendix A.2), and thus lower future marginal utility. This effect arises

because each agent believes that the other agent’s model is partially inaccurate. There-

fore, in presence of disagreement, both agents decide to save less today, which increases the

equilibrium risk-free rate.

The market price of risk perceived by agent B in (22) potentially loads on four in-

dependent sources of risk: aggregate output risk Ŵ δ, fundamental risk Ŵ fB, agent B’s

information risk Ŵ sB, and agent A’s information risk Ŵ sA∗. Only aggregate output risk and

fundamental risk are priced. First, agent B requires a positive price for bearing the risk of

fluctuations in aggregate output δ, as determined by the first element in the vector (market

price of aggregate output risk). Second, agent B requires a price for bearing fundamental

risk which affects her consumption through the consumption share process (market price of

fundamental risk). This second term exists because agents disagree about the interpretation

of fundamental shocks.

To characterize the market price of fundamental risk, it is first important to interpret

the sign of the structural disagreement Dt. Whenever Dt > 0, agent B’s model has a more

favorable economic outlook. This arises when (i) the economy is going through good times

12



(f̄ − ft < 0) and agent B believes the fundamental to be more persistent than agent A (a

longer economic boom), or (ii) when the economy is going through bad times and agent B

believes the fundamental to be less persistent than agent A (a shorter recession).

Given this interpretation, when agent B has a more favorable outlook (Dt > 0), positive

shocks to the fundamental increase her consumption share. This induces a positive corre-

lation between her consumption share and the fundamental, and thus agent B requires a

positive premium to bear fundamental risk. Alternatively, when Dt < 0, agent B’s model

has a less favorable outlook and her consumption share is negatively correlated with funda-

mental risk. She is then willing to pay a price to bear fundamental risk. Lastly, if Dt = 0,

agents have the same forecasts, consumption shares to not fluctuate, and thus there is no

market price of fundamental risk. Note also that agent B requires a larger market price of

risk (in absolute value) when the proportion of agent A in the economy, ωA, is large.

2.3 Stock return volatility and equity risk premium

Proposition 2 below characterizes the equilibrium stock return volatility and risk premium.

Proposition 2. The state variables in this economy are ft, λ̂
A
t , λ̂Bt , γt, and µt ≡ log ηt. The

diffusion vector of stock returns, Σ, and the risk premium perceived by agent B, RPB, satisfy

Σ =


σδ +

Sf
S
σfρ

Sf
S
σf
√

1− ρ2 + 1

σf
√

1−ρ2

[
−Sµ

S
D +

(
SλA
S

+
SλB
S

)
U
]

φΦ
(
SλA
S
φ2 +

SλB
S

)
SλA
S
φΦ
√

1− φ4



>

(25)

RPB ≡ ΣθB (26)

= ασδ

(
σδ +

Sf
S
σfρ

)
+
Sf
S
DωA +

[(
SλA
S

+
SλB
S

)
UD − Sµ

S
D2

]
ωA

σ2
f (1− ρ2)

(27)

where Sy denotes the partial derivative of the stock price with respect to the state variable y,

and D and U are defined in (15) and (16).

Proof. Application of Itô’s lemma on the stock price defined in (23).

Because the economy is driven by four sources of risk, the stock return diffusion Σ,

expressed in Equation (25), has four components. The instantaneous volatility of stock

returns is then computed as the norm of the diffusion vector, σ ≡ ||Σ||. It is important to

notice that the structural disagreement D and the structural uncertainty U directly impact

the stock return volatility. We analyze the impact of these objects in Section 3.2.
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The risk premium perceived by agent B in (27) is computed as the vector product between

the market price of risk θB and the stock return diffusion Σ. Because the market price of

risk is driven solely by structural disagreement, it follows that disagreement directly impacts

the risk premium in the economy. Furthermore, Equation (27) shows that if we set D = 0,

then uncertainty has no direct impact on the risk premium. This implies that disagreement

is an important channel through which uncertainty impacts the risk premium in our model.

We will explore these implications in Section 3.3.

Learning about the length of business cycles connects both uncertainty and disagreement

with the observable fundamental f , as shown in Definition 1. This feature is particular to

our model and implies that uncertainty and disagreement have an impact only when the

fundamental is away from its long-term mean (i.e., when f 6= f̄). As the fundamental is

closer to its long-term mean, both structural uncertainty and structural disagreement get

close to zero. Conversely, a fundamental far from its long-run mean enhances the effects of

uncertainty and disagreement on asset returns. We turn now to a quantitative examination

of these effects.

3 Theoretical and Empirical Results

We begin by calibrating the parameters observable by the agents to real U.S. output growth

data. Then, using those results, we provide numerical analysis to charaterize how uncertainty

and disagreement affect asset prices. Finally, we develop a set of precise empirical predictions

and test them using quarterly S&P 500 data.

3.1 Calibration

Set α = 3, β = 0.03, and the ratio of Lagrange multipliers equal to one.18 We calibrate the

model to the following data: (i) the real U.S. GDP growth rate; (ii) the median of analyst

forecast of the U.S. GDP growth rate for the current quarter; (iii) the 75th percentile of

the 1-quarter-ahead analyst forecasts; and (iv) the 25th percentile of the 1-quarter-ahead

analyst forecasts. We calibrate all parameters using Maximum Likelihood estimation. The

data is at quarterly frequency, from Q4:1968 to Q2:2016, and obtained from the Federal

Reserve Bank of Philadelphia.19

The parameter estimates and their statistical significance are summarized in Table 1.20

18This choice of risk aversion and the subjective discount rate yields a mean price-dividend ratio of about
17 and a mean stock return volatility of about 16%. Equal Lagrange multipliers ensures that agents are
endowed with the same initial share of consumption

19https://www.philadelphiafed.org/research-and-data/
20See Appendix A.4 for further details on the estimation method.
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Parameter Symbol Estimate

Volatility of dividend growth σδ 0.0124∗∗∗

(8.00× 10−4)

Long-term fundamental f̄ 0.0220∗∗∗

(1.00× 10−4)

Volatility of fundamental σf 0.0233∗∗∗

(4× 10−4)

Correlation between dividend and fundamental ρ 0.0694∗∗∗

(1.95× 10−2)

Mean-reversion speed of fundamental mean-reversion speed κ 0.2014∗∗∗

(2.97× 10−2)

Long-term fundamental mean-reversion speed λ̄ 0.2165∗∗∗

(6.7× 10−3)

Volatility of fundamental mean-reversion speed Φ 0.0435∗∗∗

(5.4× 10−3)

Difference-of-beliefs parameter φ 0.3754∗∗∗

(4.07× 10−2)

Table 1: Calibration to the U.S. economy (Maximum Likelihood estimation)
Parameter values resulting from a Maximum Likelihood estimation, as described in Ap-
pendix A.4. Standard errors are in brackets and statistical significance at the 10%, 5%, and
1% levels is respectively labeled ∗, ∗∗, and ∗∗∗.

All parameters are statistically significant at the 99% confidence level. The volatility of

dividend growth σδ, the long-term mean of the fundamental f̄ , and the volatility of the

fundamental σf are consistent with the values used in the asset-pricing literature (e.g.,

Brennan and Xia, 2001; Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2010; Croce,

Lettau, and Ludvigson, 2014). The correlation ρ between the fundamental and the divi-

dend growth rate is positive (analysts adjust their forecasts upward when they observe a

positive growth surprise, and downward when they observe a negative growth surprise), but

lower than one (analysts use other sources of information to infer the expected growth).

The long-term mean-reversion speed of the fundamental implies a half-life of approximately

three years, which is slightly shorter than what is assumed in the long-run risk literature.

The mean-reversion speed itself is relatively persistent as its half-life is approximately four

years. Furthermore, its volatility is significantly different from zero, which lends support to

our assumption of time-varying mean-reversion speed.
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Figure 1: Volatility vs. (f̄ − f)

Panel (a) plots the stock return volatility against (f̄ − f) for three different values of dis-
agreement. For this panel, the Bayesian uncertainty γ is fixed at γ̄ = 0.004 (as defined in
Appendix A.1) and ωA = 0.5. Panel (b) plots the stock return volatility against (f̄ − f)
for three different values of the uncertainty γ. For this panel, disagreement is fixed at
∆λ̂ ≡ λ̂B − λ̂A = 0 and ωA = 0.5. Panel (c) plots the stock return volatility against (f̄ − f)
for three different values of agent A’s consumption share ωA. For this panel, disagreement
is fixed at ∆λ̂ = −0.1 and γ = γ̄ = 0.004. Parameter values are provided in Table 1.

3.2 Stock return volatility

We turn now to characterizing how uncertainty and disagreement affect stock return volatility

using the calibration in Table 1. We solve numerically for equilibrium quantities using the

Chebyshev collocation method (details are provided in Appendix A.3). We then compute

the stock return volatility by means of Equation (25) of Proposition 2. In Figure 1, we

plot the volatility against the deviation between the long-term mean of the fundamental and

the fundamental, i.e. f̄ − f . Note that this term appears in the definition of structural

uncertainty and structural disagreement, which justifies its choice for the plot. As such, in

Figure 1, the right-hand side of zero can be interpreted as “bad times,” whereas the left-hand

side can be interpreted as “good times.”

Panel (a) plots the stock return volatility for three different levels of disagreement. Here,

we fix λ̂A = λ̄, and assume that λ̂B takes three different values such that ∆λ̂ = λ̂B −
λ̂A ∈ {0,−0.1, 0.1}. Panel (b) plots the stock return volatility for three different levels of

uncertainty, γ ∈ {γ̄, γ̄/2, 0}, where γ̄ represents an upper bound which arises from learning

(we define and interpret this upper bound in Appendix A.1). Panel (c) plots the stock return

volatility for three different values of agent A’s consumption share, ωA ∈ {0.3, 0.5, 0.7}, with

disagreement fixed at ∆λ̂ = −0.1.

All panels of Figure 1 show that stock return volatility significantly varies with the
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fundamental. Volatility is U-shaped in (f̄−f) and reaches a minimum when the fundamental

is close to its long-term mean.21 The feature that generates this U-shaped pattern is the

stochastic volatility of the filter, which we describe in Section 2.1. More precisely, when the

fundamental is away from its long-term mean, agents accurately update their assessment

of λ using fundamental shocks; this amplifies the effect of fundamental shocks, generating

higher volatility of the filter and hence higher stock return volatility.

Focusing on panel (a), disagreement has an additional impact on the level of volatility,

beyond the impact of the fundamental. Keeping λ̂A fixed at λ̄, volatility increases when one

of the agents—in this particular case agent B—perceives more persistence in the expected

growth rate (dashed line). The three lines in the plot show that this effect is non-negligible:

when one agent believes the economy to be more persistent, fundamental shocks have a

long-lasting impact on the future growth, thus generating higher stock return volatility.

Turning now to panel (b), most of the intuition can be conveyed by starting with the

case when uncertainty is zero (dotted line). In this case, volatility increases almost linearly

with (f̄ − f) and is thus higher in bad times (more on this asymmetric effect below). Then,

uncertainty amplifies the effect, but only when the fundamental is away from its mean,

generating a “hockey-stick” pattern.

The asymmetric effect in panel (b), i.e., higher volatility in bad times, results from the

switching sign of the correlation between the filter and the fundamental, which we describe

in Section 2.1. More precisely, the filter and the fundamental are positively correlated in bad

times and negatively correlated in good times. Shocks in bad times are therefore amplified.

For instance, on top of a bad fundamental shock occurring in bad times, agents update

and believe the economy is more persistent. Both of these shocks move prices in the same

direction and thus magnify the volatility in bad times. In contrast, in good times, when

agents update, this moves the filter in the opposite direction as the fundamental, which

dampens the volatility of stock returns.

Finally, turning to panel (c), when agent B perceives more persistence than agent A

(i.e., ∆λ̂ < 0), the stock return volatility increases with agent B’s consumption share, or

equivalently decreases with agent A’s. More persistence implies more risk, and this risk is

particularly important when the agent perceiving more persistence is the largest consumer

in the economy. By the same logic, volatility increases with agent A’s consumption share

when the disagreement ∆λ̂ is positive. When the disagreement is zero, consumption shares

have no impact on volatility.

To summarize, changes in the fundamental have a first-order effect on the volatility of

asset returns, which increases in bad times. Adding to this effect, both the uncertainty

21The minimum is not reached at ft = f̄ , because the stock return variance is a quadratic function of
(f̄ − ft). Denoting this function by a(f̄ − ft)2 + b(f̄ − ft) + c, the minimum is reached at ft = f̄ + b/(2c).
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and the disagreement about the mean-reverting speed amplify fundamental shocks when the

economy is away from its long-term mean. These interactions generate an asymmetric U-

shaped (hockey-stick) volatility pattern. As we will show in Section 3.4, these interactions

also suggest an approach to empirically test our novel theoretical predictions.

3.3 Equity risk premium

According to our discussion of the market price of fundamental risk in Section 2.2, D > 0

implies that agent B has a more favorable economic outlook. With this interpretation in

mind, we plot the equity risk premium perceived by agent B (Equation (27) of Proposition 2)

as a function of the structural disagreement D in the three panels of Figure 2.

Panel (a) depicts this relationship for two different levels of disagreement. Here, we

assume that λ̂A = λ̄, we fix λ̂B at two different values such that ∆λ̂ ≡ λ̂B− λ̂A ∈ {−0.1, 0.1},
and then vary the level of the fundamental in order to obtain different values of structural

disagreement D. Panel (a) shows that the risk premium required by agent B for holding

the risky asset is high when her model forecasts a less favorable economic outlook, i.e.,

when D < 0 (notice that this result is independent on the sign of ∆λ̂). When D < 0, the

stock is a bad hedge against fundamental risk—fluctuations in the stock price are positively

related to fluctuations in agent B’s consumption share—and thus agent B requires a large

risk premium to hold the risky asset. Conversely, when agent’s B economic outlook is more

favorable (D > 0), fluctuations in the stock price are negatively related to fluctuations in

her consumption share, which makes the stock a good hedge against fundamental risk and

therefore she is willing to pay a premium to hold the risky asset.

Panel (b) of Figure 2 plots the risk premium for three different levels of uncertainty, γ ∈
{γ̄, γ̄/2, 0}, with disagreement now fixed at ∆λ̂ = −0.1. As Proposition 1 suggests, structural

uncertainty affects the risk premium only when disagreement is present. Nonetheless, the

plot shows that this effect is quantitatively weak, at least with our calibration.

Panel (c) of Figure 2 plots the risk premium for three different values of agent A’s

consumption share, ωA ∈ {0.3, 0.5, 0.7}, with disagreement again fixed at ∆λ̂ = −0.1, as in

Figure 1. When agent B forecasts a bad economic outlook (i.e., D < 0), the risk premium

she requires to hold the stock is high. This effect is particularly strong when agent A

dominates the economy (when A’s consumption share is large). Symmetrically, the risk

premium required by agent B is particularly low when she forecasts a good economic outlook,

and she is the smallest consumer in the economy.
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Figure 2: Risk premium vs. structural disagreement D
Panel (a) plots the equity risk premium perceived by agent B against the structural dis-
agreement D = (f̄ − f)∆λ̂ for two different values of disagreement. For this panel, the
Bayesian uncertainty γ is fixed at γ̄ = 0.004 (as defined in Appendix A.1) and ωA = 0.5.
We then vary the fundamental f by keeping ∆λ̂ constant in order to obtain different levels of
structural disagreement. Panel (b) plots the equity risk premium for three different values of
the Bayesian uncertainty γ. For this panel, disagreement is fixed at ∆λ̂ = −0.1 (i.e., agent
B believes the fundamental is more persistent) and ωA = 0.5. Panel (c) plots the equity
risk premium for three different values of agent A’s consumption share ωA. For this panel,
disagreement is fixed at ∆λ̂ = −0.1 and γ = γ̄ = 0.004. Parameter values are provided in
Table 1.

3.4 Empirical Tests

We test our theoretical predictions on the following dataset. We use quarterly S&P 500

excess returns from Q4:1968 to Q2:201622 to construct empirical proxies for the risk premium

(which we denote by RP e) and for the volatility (which we denote by V ole). For the risk

premium, we model excess returns as an AR(p) process, where p is the number of lags.

We set the number of lags to p = 1 (only the first lagged return of the estimated AR(p)

features a significant loading). The risk premium is then defined as the fitted value of

the estimated AR(1) process.23 We then assume that the residuals of the AR(1) process

follow a GARCH(1, 1) model, which yields the stock return volatility.24 The empirical

proxies for structural uncertainty and structural disagreement are defined as U e ≡ (f̄−f e)γe

and De ≡ (f̄ − f e)∆λ̂e, respectively. The empirical proxies for the fundamental f e, the

22http://www.econ.yale.edu/ shiller/data.htm
23Assuming an ARMA(p, q) instead of an AR(p) does not change our results. Moreover, adding the

dividend yield as a predictor of future returns (Xia, 2001; Cochrane, 2008; Van Binsbergen and Koijen,
2010) does not affect our results either.

24The results hold if we use either a GARCH model with additional lags or an asymmetric GARCH
model to proxy for stock return volatility.
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disagreement ∆λ̂e ≡ λ̂B,e − λ̂A,e, the Bayesian uncertainty γe, the mean-reversion speed

λ̂B,e, and the consumption share ωeA are obtained from the Maximum Likelihood estimation

performed in Section 3.1. Specifically, with the calibration of Table 1 and the four time series

used in the estimation, we build historical model-implied time series of the four Brownian

motions governing the economy (more details in Appendix A.4). With these time series at

hand, we construct empirical proxies for f e, ∆λ̂e, γe, λ̂B,e, and ωeA.25

Testable prediction 1 The first testable prediction concerns the shape of the term struc-

ture of disagreement. Define disagreement at horizon τ as the absolute difference between

the agents’ expectations of the fundamental at the τ -year horizon:

D(τ) ≡
∣∣EA (fτ )− EB (fτ )

∣∣ , (28)

where EA(.) and EB(.) are expectations taken under the probability measures of agents A and

B. We compare this term structure of disagreement with its empirical counterpart, De(τ),

which we define as the median difference between the 75- and 25-percentile of the τ -year-

ahead analyst forecast on real U.S. GDP growth (computed over the number of observations),

with τ varying from the current quarter to 1-year ahead.

We plot the empirical and model-implied term structures of disagreement in Figure 3. The

empirical term structure of disagreement is slightly hump-shaped (left panel), being higher at

the 1-quarter horizon and decreasing thereafter. The literature presents mixed conclusions

about the shape of the term structure of disagreement: Patton and Timmermann (2010)

provide evidence of an increasing term structure of disagreement, whereas Andrade et al.

(2017) argue for a decreasing term structure. Our analysis suggests a non-monotonic pattern,

which can be either increasing or decreasing depending on the time horizon considered.

Turning to the model-implied term structure of disagreement (right panel), we also obtain

a hump-shaped pattern. This pattern is implied by our learning exercise: agents agree on

the value of the fundamental today, but disagree over its future path, which generates the

hump-shape. Disagreement starts by increasing but then decreases back to zero as the

maturity increases (the expectation of the future value of a mean-reverting process tends to

its long-term mean as the maturity increases). In contrast, models of dispersion of beliefs

where agents disagree about the level of the fundamental (e.g. Dumas et al., 2009) can

only generate a monotonically decreasing term structure of disagreement. The left panel

shows that the hump-shaped pattern is supported by the data. It validates our motivation

to study disagreement about the persistence of the fundamental and not necessarily about

its level (with the caveat that the model does not exactly replicate the observed timing of

25We plot the time series of fe, ∆λ̂e, γe, λ̂B,e, and ωe
A in Appendix A.5.
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Figure 3: Empirical and model-implied term structures of disagreement

Panel (a) plots the empirical term structure of disagreement: disagreement at horizon τ ,
De(τ), is measured as the median of the difference between the 75th and 25th percentile
of the τ -year-ahead analyst forecasts on real U.S. GDP growth (obtained from the Federal
Reserve Bank of Philadelphia). Panel (b) plots the model-implied term structure of dis-
agreement: disagreement at horizon τ , D(τ), is measured as the absolute difference between
the two agents’ expectations of the fundamental at the τ -year horizon. Parameter values
are provided in Table 1. Initial values are f0 = 6%, λ̂A0 = λ̄+ 2Φ/

√
2κ, λ̂B0 = λ̄− 2Φ/

√
2κ,

δ0 = η0 = 1, and γ0 = γ̄, with γ̄ defined in Appendix A.1.

disagreement, which peaks at the 1-quarter horizon in the data and at the 3-year horizon in

our model; the timing of the peak is determined by the long-term mean λ̄ of the two filters

λ̂A and λ̂B—a larger long-term mean means a higher average mean-reversion speed and thus

a peak arising at a shorter horizon).

Testable prediction 2 The second testable prediction is that stock return volatility is per-

sistent, and its persistence is principally generated by persistence in structural uncertainty.

Column (a) of Table 2 confirms that volatility is persistent in the model, by regressing cur-

rent volatility on past volatility. Moreover, adding the state variables into the regression

decreases the loading on past volatility, as shown in column (b). That is, persistence in

the state variables induces persistence in volatility. In particular, the strong statistical sig-

nificance of the loadings on structural uncertainty U and U2 suggests that the persistence

in volatility is principally driven by the persistence in structural uncertainty. Column (c)

shows that stock return volatility is also persistent in the data (Engle, 1982; Bollerslev,

1986), although to a lesser extent than in the model. Lending support to the prediction that
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(a) (b) (c) (d)
V olmt V olmt V olet V olet

Const. 0.012∗∗∗ 0.131∗∗∗ 0.046∗∗∗ 0.059
(0.004) (0.020) (0.007) (0.055)

Ut 23.04∗∗∗ 118.2∗∗∗

(3.503) (31.85)

(Ut)2 220384∗∗∗ 508608∗

(2.41× 104) (2.83× 105)

Dt −0.247 6.050∗∗∗

(0.350) (2.007)

λ̂Bt −0.119∗∗∗ −0.008
(0.012) (0.056)

ωA,t −0.015 −0.007
(0.034) (0.112)

V olt−1 0.934∗∗∗ 0.425∗∗∗ 0.704∗∗∗ 0.628∗∗∗

(0.025) (0.037) (0.040) (0.042)

R2 0.873 0.942 0.494 0.605
# Obs. 216 216 190 190

Table 2: Persistence in stock return volatility vs. persistence in structural
uncertainty
V olm and V ole stand for the model-simulated volatility and empirical volatility, respectively.
The variables U , D, λ̂B, ωA, and V ol are simulated from the model in columns (a) and (b),
and correspond to the empirical proxies in columns (c) and (d). The data are at a quarterly
frequency. Newey and West (1987) standard errors are in brackets and statistical significance
at the 10%, 5%, and 1% levels is respectively labeled *, **, and ***.

persistence in structural uncertainty generates persistence in volatility, column (d) shows

that adding the state variables into the regression decreases the loading on V olt−1 and yields

a particularly significant loading on structural uncertainty.

Testable prediction 3 The third testable prediction concerns the relation between volatil-

ity and the risk premium (i.e., the risk-return tradeoff). Our model predicts that this relation

depends on the sign of disagreement. More precisely, the risk premium given in Equations

(26) and (27) of Proposition 2 can be further written:

RPB = a0 + a1 × f(U ,D)D, (29)

where f(U ,D) ≈ σ is a function directly related to the volatility of stock returns, and a0

and a1 are two coefficients that do not depend on U and D. Equation (29) suggests a

linear relationship between the risk premium and the volatility interacted with structural

disagreement. This relationship holds because most of the variation in volatility is generated
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by the second diffusion component in (25), and only the second component of the market

price of risk in (22) fluctuates through the structural disagreement D. Because structural

disagreement can be either positive or negative, the risk-return tradeoff becomes ambiguous.

Yet, panel (a) of Figure 4 shows that in our model the risk premium is clearly higher when

the product between structural disagreement and volatility is large and negative. Notice that

the R2 of the linear regression fit shown in the legend of the plot is equal to 0.999. That is,

the interaction between volatility and structural disagreement explains all of the variation

in the risk premium; considering additional explanatory variables such as the structural

uncertainty U or the consumption share ωA into the regression does not improve the fit.

Columns (a) and (b) of Table 3 test this theoretical prediction. The risk-return tradeoff

becomes apparent when the volatility is interacted with the structural disagreement. The

relationship is negative and strongly significant, even after controlling for the other state vari-

ables and for the individual components of the interaction terms. As in the model, structural

uncertainty, the mean-reversion speed, and the consumption share have no impact on the risk

premium—see the discussion of panel (a) of Figure 4. The data, however, show that the risk

premium remains significantly and positively related to structural disagreement, whereas it

is not in the model. In panel (d) of Figure 4, we depict the empirical relation between the

risk premium and the volatility interacted with structural disagreement. Comparing panel

(d) to its model-implied counterpart in panel (a) shows that the model replicates the relation

observed in the data.

Our model predicts that the risk-return tradeoff is not always positive, and thus can

rationalize the inconclusive findings in the literature about the sign and the significance of

this relationship.26 The literature presents evidence that this relationship indeed changes

sign. Rossi and Timmermann (2015) show that the risk-return tradeoff is positive (negative)

for low (high) volatility levels. Similarly, Ghysels, Plazzi, and Valkanov (2016) find that

the ICAPM (Merton, 1973) holds over samples that exclude financial crises. While the

relationship (29) does not clearly distinguish between good and bad times in our case, a

plausible link with the literature can still be made. When D < 0, agent B has a less

favorable outlook about the future, which suggests that current times are comparably better

than future times in agent B’s view. It is during these times that the risk-return tradeoff is

positive, as in the above mentioned references.

Testable prediction 4 The fourth testable prediction is that increased structural uncer-

tainty is associated with a non-linear increase in volatility. We confirm this relationship in

panel (b) of Figure 4, where we plot the volatility of stock returns against the structural

26See Backus and Gregory (1993), Glosten et al. (1993), Whitelaw (2000), Brandt and Kang (2004), Rossi
and Timmermann (2015), and Adrian, Crump, and Vogt (2015), among many others.
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Figure 4: Theoretical and empirical relationships between risk premium, volatil-
ity, structural uncertainty, and structural disagreement

Panel (a) plots the risk premium against the product D × V ol with model-generated data
resulting from one simulation of the economy at weekly frequency over 50 years (2,600 data
points). The dashed line represents the linear fit; the equation of the regression line is shown
in the legend. Panel (b) plots the stock return volatility against the structural uncertainty
U . The dashed line represents a quadratic fit; the equation of the regression line is shown in
the legend. Panel (c) plots the risk premium against the structural disagreement D with the
same model-generated data. The dashed line represents the linear fit; the equation of the
regression line is shown in the legend. Panel (d) plots the fit resulting from the regression
in column (a) of Table 3. Panel (e) plots the fit resulting from the regression in column
(c) of Table 3. Panel (f) plots the fit resulting from the regression in column (e) of Table
3. Parameter values are provided in Table 1. Initial values for the simulation are f0 = f̄ ,
λ̂A0 = λ̂B0 = λ̄, δ0 = η0 = 1, and γ0 = γ̄, where γ̄ is defined in Appendix A.1.

uncertainty U on model-generated data. We add a quadratic regression line (equation given

in the legend of the plot), which confirms the asymmetric hockey-stick pattern. The R2 of
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(a) (b) (c) (d) (e) (f)
RP e RP e V ole V ole RP e RP e

Const. 0.0070∗∗∗ 0.204 0.148∗∗∗ 2.963∗∗ 0.0068∗∗∗ 0.078
(0.0007) (0.192) (0.006) (1.383) (0.0007) (0.179)

U e −391.2 144.9∗∗∗ −2131 −1847
(945.4) (53.4) (5220) (1175)

(U e)2 730591∗ 605385∗∗

(4.33× 105) (2.38× 105)

De 4.895∗∗ 11.540∗∗∗ −1.719∗∗ −1.253∗∗

(2.173) (3.368) (0.736) (0.606)

λ̂B,e −0.036 −0.232 −0.026
(0.024) (0.143) (0.023)

ωeA 0.052 −0.078 0.053∗

(0.034) (0.246) (0.032)

De × V ole −14.22∗∗∗ −39.38∗∗∗

(5.08) (14.56)

f̄ − f e 1.449 9.137 7.206
(3.760) (20.728) (4.662)

γe 0.022 −677.3∗∗ −22.868
(0.016) (330.7) (44.716)

∆λ̂e −0.005 0.293∗∗ 0.003
(0.024) (0.135) (0.016)

V ole −53.33
(48.86)

R2 0.105 0.240 0.166 0.308 0.051 0.173
# Obs. 191 191 191 191 191 191

Table 3: Empirical tests of the relations between S&P 500 risk premium and
return volatility vs. structural uncertainty and disagreement
Columns (a) and (b) test the relation between the risk premium and volatility. Columns (c)
and (d) test the relation between volatility and the state variables. Columns (e) and (f)
test the relation between the risk premium and the state variables. Newey and West (1987)
standard errors are in brackets and statistical significance at the 10%, 5%, and 1% levels is
respectively labeled *, **, and ***.

the regression is 0.74, which shows that structural uncertainty explains most of the variation

in stock return volatility. Adding the structural disagreement D and the consumption share

ωA as explanatory variables increases the R2 by one percentage point only, whereas adding

the mean-reversion speed λ̂B increases the R2 to 0.90. The loading on λ̂B is negative and

significant, which means that less persistence implies less equity risk (Bansal and Yaron,

2004).

Columns (c) and (d) of Table 3 lend support to this theoretical prediction. The S&P
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500 return volatility tends to increase with structural uncertainty; moreover, volatility is

a quadratic function of structural uncertainty.27 This holds even after controlling for the

other state variables and for the individual components of the interaction terms. Indeed, the

quadratic coefficient in column (d) remains positive and statistically significant. In line with

the theory, volatility is not impacted by the consumption share—see the discussion of panel

(b) of Figure 4. It is worth mentioning that disagreement is a significant driver of volatility

in the data, but less in the model (at least with the current calibration—see Section 4.1

for a discussion). Furthermore, the loading on the mean-reversion speed is negative as in

the model, but only weakly significant (its p-value is 0.105). The empirical relation between

volatility and structural uncertainty is depicted in panel (e) of Figure 4. The relation features

a hockey-stick pattern, as our model predicts in panel (b).

Testable prediction 5 The fifth and final testable prediction is that the equity risk pre-

mium decreases with structural disagreement. Panel (c) of Figure 4 confirms this decreasing

relationship, with the equation of the linear regression fit shown in the legend of the plot.

The R2 of the regression is 0.996, which shows that structural disagreement explains all of

the variation in the risk premium. As a consequence, adding any other explanatory variables

such as the consumption share ωA or the structural uncertainty U into the regression does

not improve the fit.

Columns (e) and (f) of Table 3 test this theoretical prediction. The negative and signif-

icant loading on the structural disagreement is consistent with our model’s prediction that

the risk premium decreases with structural disagreement. This negative relation is highly

statistically significant, even when the other state variables and the individual components

of the interaction terms are considered as controls. It is also worth noting that the consump-

tion share has a weakly significant impact on the risk premium in the data, whereas this

impact is nonexistent in the model—see the discussion of panel (c) of Figure 4. The empirical

relation between the risk premium and structural disagreement is depicted in panel (f) of

Figure 4. Comparing panel (f) with its model-implied counterpart in panel (c) shows that

the empirical and model-implied relations are similar.

27Note that a quadratic fit between volatility and the demeaned fundamental (V olet = a0 + a1(f̄ − fet ) +
a2(f̄ − fet )2 + εt) yields a1 = 0.575∗∗∗, a2 = 11.484∗, and R2 = 0.16, which shows that volatility is also a
quadratic function of the fundamental.
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Figure 5: The role of the parameter φ

Both panels plot the stock return volatility against the structural uncertainty U with model-
generated data resulting from one simulation of the economy at weekly frequency over
50 years (2,600 data points). The dashed lines represent quadratic fits, with regression
equations shown in the legends. In panel (a) we fix φ = 0.1, whereas in panel (b) we fix
φ = 0.7. Unless otherwise specified, parameter values are provided in Table 1.

4 Additional Results and Robustness Checks

4.1 More on the role played by disagreement

The parameter φ affects how much disagreement is in the market and how much uncertainty

agents face. Higher φ implies better information and less uncertainty. We analyze now the

role played by this parameter in our results.

In Appendix A.2, we show that the dynamics of disagreement are given by:

d∆λ̂t = −

(
κ+

γt
(
f̄ − ft

)2

σ2
f (1− ρ2)

)
∆λ̂tdt+

(
0 0 φΦ (1− φ2) φΦ

√
1− φ4

)
dŴt, (30)

which implies that φ affects the instantaneous volatility of disagreement. As previously

discussed in Section 2.1, when φ is either zero or one, the agents are in perfect agreement.

The instantaneous volatility of disagreement is magnified in our model when φ takes an

intermediate value (i.e., when φ ≈ 0.7).

In Figure 5, we consider two different values of φ (the calibrated value of Table 1 is

φ = 0.3754): φ = 0.1 and φ = 0.7. In the first case, fluctuations in disagreement are

relatively small when compared to our benchmark calibration, whereas in the latter case,
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the fluctuations are larger. We then simulate the economy as in Section 3.4 and make the

same plot as panel (a) of Figure 4. The two plots in Figure 5 show the role played by

disagreement. When φ = 0.1, structural uncertainty is the sole driver of volatility and

fluctuations in disagreement do not add much variability. When φ = 0.7, fluctuations in

disagrement are more important and explain a larger fraction of the variation in volatility.

4.2 Uncertainty and the persistence of volatility

Most of the fluctuations in volatility are generated by fluctuations in structural uncertainty

U (Section 3.4). This implies that the persistence of stock return volatility is directly related

to the persistence of structural uncertainty. Given that structural uncertainty is endoge-

nously generated by the learning of agents, it is a strongly persistent process.28 Stock return

volatility is thus persistent in our model because the structural uncertainty resulting from

learning about the mean-reversion speed is persistent. This offers a plausible theoretical

foundation of the GARCH behavior commonly observed in financial markets (Engle, 1982;

Bollerslev, 1986).

Since the structural uncertainty is the product of the demeaned fundamental f̄ − f and

the Bayesian uncertainty γ, it is not clear whether the persistence in return volatility is

implied by that in the fundamental or that in the Bayesian uncertainty. One way to show

that it is the persistence in Bayesian uncertainty that generates most of the persistence in

the stock return volatility is to consider different values for λ̄. In Table 4, we estimate the

1-month autocorrelation of volatility (on model-simulated data) for different values of λ̄. As

λ̄ increases, the fundamental becomes significantly less autocorrelated (i.e., the fundamental

becomes a fast reverting process as opposed to a persistent one) but uncertainty remains

strongly persistent, and so does the equilibrium stock return volatility.29

In our model, disagreement about the length of the business cycle is the main driver of

the equilibrium risk premium. With the benchmark calibration of Table 1, we obtain (from

model-simulated data) a 1-month autocorrelation of the risk premium of 0.948, whereas

disagreement features a 1-month autocorrelation of 0.992. Given this, disagreement appears

28It is straightforward to understand why learning implies persistent uncertainty. If uncertainty is high,
agents need not one but a succession of high quality signals for uncertainty to decrease significantly (con-
versely, a succession of low quality signals are needed for uncertainty to increase significantly). Collin-
Dufresne et al. (2015) show that, when investors need to learn about the constant expected consumption
growth rate of the economy, uncertainty is strongly persistent and converges to a constant steady state. In
their equilibrium model, such persistence implies a large risk premium when investors have Epstein and Zin
(1989) preferences with a sufficiently large elasticity of intertemporal substitution. In our model, uncer-
tainty is indeed persistent but never converges to a constant steady state because its dynamics depend on
the fundamental, as shown in (10).

29In Appendix A.6 we depict one model-simulated path of volatility and the state variables, which provides
additional evidence that persistence in the Bayesian uncertainty drives persistence in volatility.
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Parameter Persistence Persistence Persistence
values fundamental f uncertainty γ volatility σ

Benchmark calibration 0.972 0.998 0.987
λ̄ = 1 0.923 0.997 0.986
λ̄ = 2 0.808 0.994 0.982
λ̄ = 5 0.632 0.990 0.981

Table 4: Persistence in stock return volatility vs. persistence in fundamental
This table reports the 1-month autocorrelation in the fundamental f , Bayesian uncertainty
γ, and stock return volatility. Unless stated otherwise, parameter values are provided in
Table 1. In rows 2 to 4, the parameter σf is chosen such that the long-term volatility of the

fundamental, σf/
√

2λ̄, is equal to its benchmark counterpart.
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Figure 6: Volatility, risk premium, and disagreement after a recessionary shock

The solid lines show the average values for volatility (panel a), risk premium (panel b), and
disagreement λ̂B − λ̂A (panel c), averaged across 10,000 simulated 5-year paths at weekly
frequency. The dashed lines plot the 5th and 95th percentiles computed across the simulated
paths. Parameter values are provided in Table 1. Initial values are f0 = −5%, λ̂A0 = 0.22,

λ̂B0 = 0.1, δ0 = η0 = 1, and γ0 = γ̄, where γ̄ is defined in Appendix A.1.

to drive the persistence of the risk premium in this economy.

We conclude this section with an illustration of the persistent dynamics of the volatil-

ity and risk premium after the economy experiences a recessionary shock. Suppose that

professional forecasters estimate the growth rate of the economy at −5% (approximately

two unconditional standard deviations below the long-term growth f̄ = 2.2%). Assume fur-

ther that the two agents consider two different mean-reversion speeds, λ̂A = λ̄ = 0.22 and

λ̂B = 0.1 (agent B has a less favorable economic outlook and expects a relatively longer

recession).

Figure 6 illustrates the evolution of the volatility, risk premium, and disagreement over

five years at weekly frequency. The solid lines represent averages across 10,000 simulations.30

30The average volatility across simulations and time is 16%, the average risk premium is 0.7%, and the
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Panel (a) shows that volatility increases to about 20% (in annualized terms) and then goes

down slowly over the next five years (solid line)31. The dashed lines are the 5th and 95th

percentiles computed across 10,000 simulations. The take-away message of this exercise

is that volatility is persistent and features a lot of variability. We have tried several other

specifications, including an initial situation without disagreement, and the results are similar.

This example illustrates that learning about the mean-reversion speed of the fundamental

induces GARCH-like variation in the volatility of stock returns.

Turning to panel (b), the risk premium required by agent B for holding the asset is large

and positive (recall that agent B’s model has a less favorable economic outlook). One im-

portant consideration here is that if we start with an initial situation without disagreement,

then the risk premium is close to zero (although it still experiences fluctuations). Disagree-

ment is therefore the main driver of risk premia, whereas uncertainty mostly explains the

persistent fluctuations in volatility.

Finally, panel (c) shows the evolution of disagreement (i.e., the difference λ̂B−λ̂A) over the

five-year period of our simulated sample, averaged across 10,000 simulations. Disagreement

takes a long time to converge back to zero. Furthermore, the 5th and 95th percentile lines

show that disagreement is very volatile. Note also that, although agent B believes initially

that the fundamental is more persistent than agent A, there is a chance than in the near

future these beliefs will reverse and agent B’s model features a less persistent fundamental.

4.3 Survival

The validity of our theoretical results in the long run depends on whether both agents

survive in the economy for a sufficiently long period of time. To investigate this, we follow

Dumas et al. (2009) and analyze the distribution of the agents’ future consumption shares.

Consistent with previous sections, we perform our analysis under the probability measure

of agent B (i.e., we assume that the beliefs of agent B coincide with the objective—true—

beliefs).

Figure 7 plots the distribution of the consumption share of agent B resulting from 10,000

simulated economies up to 200 years into the future. Panel (a) plots the average consumption

share and its 90% confidence interval, whereas panel (b) plots the probability density function

average risk-free rate is 8%. The average risk premium and average risk-free rate would better match their
empirical counterparts if agents had habit formation, as in Chan and Kogan (2002), Xiouros and Zapatero
(2010), Bhamra and Uppal (2013), and Ehling et al. (2017) among others. Other options are recursive
preferences (Epstein and Zin, 1989; Weil, 1989) or dividend leverage (Abel, 1999). As these extensions
would not add any insights to the main predictions of our model, we decide to keep the setup simple and
focus on the dynamic properties of asset prices.

31Given our parameter values, this level of volatility is substantial: the volatility of the dividend growth
is 1.2%, the volatility of the fundamental is 2.2% (see Table 1), and the risk aversion is α = 3.

30



0 50 100 150 200

0.45

0.5

0.55

0.6

0.65

Time (Years)

(a) Consumption share of agent B

Mean

90% confidence interval

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

Consumption share
of agent B

(b) Probability density function

50-year horizon

100-year horizon

200-year horizon

Figure 7: Distribution of the consumption share of agent B

Panel (a) plots the mean (solid line) and the 90% confidence interval (dashed lines) of the
consumption share of agent B, resulting from 10,000 simulated economies. Panel (b) plots
the probability density function of the consumption share of agent B at a 50-year (solid line),
100-year (dashed line), and 200-year (dotted line) horizon. Parameter values are provided
in Table 1. Initial values are f0 = f̄ , λ̂A0 = λ̂B0 = λ̄, δ0 = η0 = 1, and γ0 = γ̄, where γ̄ is
defined in Appendix A.1.

for three different horizons. The panels show that both agents’ consumption shares remain

non-trivial for more than 200 years. Indeed, agent A’s misperceptions of the true data-

generating process implies that her consumption share is on average 45% after 200 years.

The relatively small average loss in agent A’s consumption share suggests that agent A’s

misperceptions are relatively mild.32 Importantly, both plots show that the distributions of

the consumption shares are highly concentrated around 0.5, even at the 200-year horizon.

Overall, this analysis suggests that the theoretical results presented in the previous sections

are likely to hold for significantly long periods of time, as neither of the agents is likely to

vanish in the short term.

32Kogan, Ross, Wang, and Westerfield (2016) conduct a thorough analysis of the “market selection hy-
pothesis” and develop necessary and sufficient conditions for survival and price impact. They show that
agents with less accurate forecasts maintain a nontrivial consumption share and affect prices if the forecast
errors accumulate slowly enough over time. Other references are De Long, Summers, Shleifer, and Waldman
(1991), Yan (2008), and Kogan, Ross, Wang, and Westerfield (2006).
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5 Conclusion

In this paper, we show that disagreement and uncertainty about the persistence of funda-

mentals fits salient features of asset prices and return dynamics. When agents need to update

their beliefs about the length of the business cycle, uncertainty fluctuates, leading to new

asset pricing implications. We characterize these effects and reach three primary conclusions.

First, this type of learning implies persistent stock return volatility, which provides a

theoretical explanation for GARCH-type processes. Second, the growth rate of the economy

governs the “structural uncertainty,” which fluctuates and magnifies stock market volatility

in recessions and booms, but also the “structural disagreement,” which generates fluctuations

in risk premia. Third, the risk-return tradeoff in the economy depends on the value and sign

of the structural disagreement. A clear risk-return tradeoff appears when this relationship

is properly accounted for.

We test these theoretical predictions with S&P 500 return and U.S. output growth data

and find overall support form them. We conclude that these novel implications add to the

established literature on learning and heterogeneous beliefs and that they provide plausible

explanations for known empirical observations.
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A Appendix

A.1 Learning

Following the notations of Liptser and Shiryaev (2001), agent i observes the vectordζtdft
dsit

 =(A0 +A1λt)dt+B1dW
λ
t +B2

dW δ
t

dW f
t

dW i
t

 (31)

=

ft − 1
2σ

2
δ

0
0

+

 0
f̄ − ft

0

λt

 dt+

0
0
φ

 dW λ
t (32)

+

 σδ 0 0

σfρ σf
√

1− ρ2 0

0 0
√

1− φ2

dW δ
t

dW f
t

dW i
t

 , (33)

where i ∈ {A,B}. The unobservable process λ satisfies

dλt = (a0 + a1λt)dt+ b1dW
λ
t + b2

dW δ
t

dW f
t

dW i
t

 (34)

=
(
κλ̄+ (−κ)λt

)
dt+ ΦdW λ

t +
(
0 0 0

)dW δ
t

dW f
t

dW i
t

 . (35)

Therefore,

bob = b1b
′
1 + b2b

′
2 = Φ2 (36)

BoB = B1B
′
1 +B2B

′
2 =

 σ2
δ ρσfσδ 0

ρσfσδ σ2
f 0

0 0 1

 (37)

boB = b1B
′
1 + b2B

′
2 =

(
0 0 φΦ

)
. (38)

The estimated process defined by λ̂it = EPi (λt|Ot) has dynamics

dλ̂it =
(
a0 + a1λ̂

i
t

)
dt+ (boB + γtA

′
1)(BoB)−1

dζtdft
dsit

− (A0 +A1λ̂
i
t

)
dt

 , (39)

where the uncertainty γ solves the following Ordinary Differential Equation

dγt
dt

= a1γt + γta
′
1 + bob− (boB + γtA

′
1)(BoB)−1(boB + γtA

′
1)′. (40)
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Consequently,

dλ̂it = κ
(
λ̄− λ̂it

)
dt+

(
0 (f̄−ft)γt

σf
√

1−ρ2
φΦ
) dŴ δ

t

dŴ fi
t

dŴ si
t

 , (41)

where the three Brownians are independent and are defined as follows:

dŴ δ
t = dW δ

t (42)

dŴ fi
t =

1

σf
√

1− ρ2

[
dft − λ̂it(f̄ − ft)dt− σfρdW δ

t

]
(43)

dŴ si
t = dsit (44)

The dynamics of uncertainty are

dγt
dt

=
(
1− φ2

)
Φ2 − 2κγt −

(f̄ − ft)2

σ2
f (1− ρ2)

γ2
t . (45)

The long-term uncertainty, γ̄, solves dγt
dt

∣∣∣
ft=f̄

= 0 and hence satisfies γ̄ = (1−φ2)Φ2

2κ . As the dy-

namics (45) show, γ̄ represents an upper bound of uncertainty: when ft = f̄ the last term in (45)
vanishes and uncertainty converges to γ̄. It is only when ft 6= f̄ that uncertainty moves away
(downwards) from this upper bound.

A.2 Proof of Proposition 1

Consider the following 4-dimensional Brownian motion defined under the probability measure of
agent B:

dŴ =


Ŵ δ

Ŵ fB

Ŵ sB

Ŵ sA∗

 (46)

where the first three Brownians are defined in (42), (43) and (44). The last Brownian is defined

such that (this ensures that the correlation between dŴ sA and dŴ sB is φ2):

dŴ sA = φ2dŴ sB +
√

1− φ4dŴ sA∗ (47)

Write the dynamics of the vector of state variables under the probability measure of agent B:
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dζt =

(
ft −

1

2
σ2
δ

)
dt+

(
σδ 0 0 0

)
dŴt (48)

dft = λ̂Bt
(
f̄ − ft

)
dt+

(
σfρ σf

√
1− ρ2 0 0

)
dŴt (49)

dλ̂At =

κ(λ̄− λ̂At )+
γt

(
λ̂Bt − λ̂At

)
σ2
f (1− ρ2)

(
f̄ − ft

)2 dt (50)

+
(

0 γt

σf
√

1−ρ2

(
f̄ − ft

)
φ3Φ φΦ

√
1− φ4

)
dŴt (51)

dλ̂Bt = κ
(
λ̄− λ̂Bt

)
dt+

(
0 γt

σf
√

1−ρ2

(
f̄ − ft

)
φΦ 0

)
dŴt (52)

dγt =

(
(1− φ2)Φ− 2κγt −

(ft − f̄)2

σ2
f (1− ρ2)

γ2
t

)
dt (53)

dµt = −1

2

(
λ̂Bt − λ̂At

)2 (
f̄ − ft

)2
σ2
f (1− ρ2)

dt+

(
0 −(λ̂Bt −λ̂At )(f̄−ft)

σf
√

1−ρ2
0 0

)
dŴt, (54)

The dynamics of disagreement are given by:

d
(
λ̂Bt − λ̂At

)
= −

(
κ+

γt
(
f̄ − ft

)2
σ2
f (1− ρ2)

)(
λ̂Bt − λ̂At

)
dt+

(
0 0 φΦ

(
1− φ2

)
φΦ
√

1− φ4
)
dŴt,

(55)

and thus its conditional variance is

2φ2Φ2
(
1− φ2

)
. (56)

The optimization problem of agent B is

max
cBt

E

[∫ ∞
0

e−βt
c1−α
Bt

1− α
dt

]
(57)

s.t. E
[∫ ∞

0
ξBt cBtdt

]
≤ xB0, (58)

where ξB denotes the state-price density perceived by agent B and xB0 is her initial wealth. Under
the probability measure PB, the problem of agent A is

max
cAt

E

[∫ ∞
0

ηte
−βt c

1−α
At

1− α
dt

]
(59)

s.t. E
[∫ ∞

0
ξBt cAtdt

]
≤ xA0. (60)

Note that the change of measure enters directly the objective function of agent A but not its
budget constraint (60). The reason is that the budget constraint depends on the state-price density
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perceived by agent B.33 The first-order conditions are

cBt =
(

ΛBe
βtξBt

)− 1
α

(61)

cAt =

(
ΛA
ηt
eβtξBt

)− 1
α

, (62)

where ΛA and ΛB are the Lagrange multipliers associated with the budget constraints of agents
A and B, respectively. Summing up agents’ optimal consumption policies and imposing market
clearing, i.e., cAt + cBt = δt, yields the state-price density perceived by agent B

ξBt = e−βtδ−αt

[(
ηt
ΛA

)1/α

+

(
1

ΛB

)1/α
]α
. (63)

Substituting the state-price density ξB in the optimal consumption policies yields the following
consumption sharing rules

cAt = ωAtδt (64)

cBt = ωBtδt = (1− ωAt)δt, (65)

where ωit denotes agent i’s share of consumption at time t for i ∈ {A,B}. Agent A’s share of
consumption satisfies

ωAt =

(
ηt
ΛA

)1/α

(
ηt
ΛA

)1/α
+
(

1
ΛB

)1/α
. (66)

The evolution of agent B’s consumption share under her own probability measure follows

dωBt
ωBt

=
1

2

(1− ωBt)(1 + α− 2ωBt)

α2σ2
f (1− ρ2)

D2
t dt+

1− ωBt
ασf

√
1− ρ2

DtdŴ fB
t . (67)

Notice that the drift is always positive (as long as there is disagreement). This is also the case for
the consumption share of agent A, under her own probability measure.

As in Yan (2008) and Dumas et al. (2009), we assume that the coefficient of relative risk aversion

33Alternatively, we could have defined the state-price density perceived by agent A, ξA. Then, we would
have EA

[
ξA1x

]
= EB

[
ηξA1x

]
= EB

[
ξB1x

]
for any event x. That is, ξB = ηξA.
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α is an integer. In this case, the state-price density at time u satisfies

ξBu = e−βuδ−αu

[(
1

ΛB

)1/α

+

(
ηu
ΛA

)1/α
]α

(68)

= e−βuδ−αu
1

ΛB

α∑
j=0

(
α

j

)(
ηuΛB
ΛA

) j
α

(69)

= e−βuδ−αu
1

ΛB

α∑
j=0

(
α

j

)(
1

ηt

) j
α
(
ηtΛB
ΛA

) j
α

η
j
α
u (70)

= e−βuδ−αu
1

ΛB

α∑
j=0

(
α

j

)(
ηu
ηt

) j
α
(

ωAt
1− ωAt

)j
, (71)

where the last equality comes from the fact that

ωAt =

(
ηt
ΛA

)1/α

(
1

ΛB

)1/α
+
(
ηt
ΛA

)1/α
(72)

1− ωAt =

(
1

ΛB

)1/α

(
1

ΛB

)1/α
+
(
ηt
ΛA

)1/α
, (73)

and consequently (
ηtΛB
ΛA

) 1
α

=
ωAt

1− ωAt
. (74)

Rewriting Equation (73) yields(
1

ΛB

)1/α

+

(
ηt
ΛA

)1/α

=

(
1

1− ωAt

)(
1

ΛB

) 1
α

, (75)

and thus

ξBt = e−βtδ−αt

(
1

1− ωAt

)α 1

ΛB
=

1

ΛB
e−βt(δtωBt)

−α, (76)
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which is Equation (20) in the text. Thus, the dynamics for the stochastic discount follow:

dξt
ξt

= −
[
β + αft −

1

2
α(α+ 1)σ2

δ (77)

+α
1

2

(1− ωBt)(1 + α− 2ωBt)

α2σ2
f (1− ρ2)

D2
t −

1

2
α(α+ 1)

(1− ωBt)2

α2σ2
f (1− ρ2)

D2
t

]
dt (78)

−
(
ασδ

Dt
σf
√

1−ρ2
ωAt 0 0

)
︸ ︷︷ ︸

Market price of risk


dŴ δ

t

dŴ fB
t

dŴ sB
t

dŴ sA∗
t

 , (79)

and the risk-free rate is given by

rt = β + αft −
1

2
α(α+ 1)σ2

δ +
1

2

α− 1

α

D2
t

σ2
f (1− ρ2)

ωAtωBt. (80)

The price-dividend ratio satisfies

St
δt

= Et
(∫ ∞

t

ξBu
ξBt

δu
δt
du

)
(81)

(71) (75) (76)
= Et

∫ ∞
t

e−βuδ−αu
1

ΛB

∑α
j=0

(
α
j

) (ηu
ηt

) j
α
(

ωAt
1−ωAt

)j
e−βt

(
1

1−ωAt

)α
1

ΛB
δ−αt

δu
δt
du

 (82)

= Et

∫ ∞
t

e−β(u−t)

∑α
j=0

(
α
j

) (ηu
ηt

) j
α
(

ωAt
1−ωAt

)j(
1

1−ωAt

)α (
δu
δt

)1−α
du

 (83)

=

α∑
j=0

(
α

j

)
ωjAt (1− ωAt)α−j Et

(∫ ∞
t

e−β(u−t)
(
ηu
ηt

) j
α
(
δu
δt

)1−α
du

)
. (84)

Let us define the function Fj(Z) as follows

Fj(Zt) ≡ Et
[∫ ∞

t
e−β(u−t)

(
ηu
ηt

)ε(δu
δt

)χ
du

]
, (85)

where ε = j
α , j = 0, . . . , α, χ = 1 − α, and Z ≡

(
f, λ̂A, λ̂B, γ

)>
is a vector of state-variables that

does not comprise ζ = log δ and µ = log η.
Using these notations, the price-dividend ratio satisfies

St
δt

=
α∑
j=0

(
α

j

)
ωjAt(1− ωAt)

α−jFj(Zt) (86)

=

α∑
j=0

(
α

j

)
ωjAtω

α−j
Bt Fj(Zt), (87)

which is Equation (23) in Proposition 1.
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A.3 Solution method (Chebyshev Collocation)

We have

(
ηu
ηt

)ε
= e
− 1

2

∫ u
t ε

(
(λ̂Bs −λ̂As )(f̄−fs)

σf

√
1−ρ2

)2

ds−
∫ u
t

(
0 ε

(
(λ̂Bs −λ̂As )(f̄−fs)

σf
√

1−ρ2

)
0 0

)
dŴt

(88)(
δu
δt

)χ
= e

∫ u
t χ(fs− 1

2
σ2
δ)ds+

∫ u
t

(
χσδ 0 0 0

)
dŴt , (89)

where ε and χ are some constants. Therefore,

(
ηu
ηt

)ε(δu
δt

)χ
=e

∫ u
t

χ(fs− 1
2
σ2
δ)−

1
2
ε

(
(λ̂Bs −λ̂As )(f̄−fs)

σf

√
1−ρ2

)2

+ 1
2

χ2σ2
δ+ε2

(
(λ̂Bs −λ̂As )(f̄−fs)

σf

√
1−ρ2

)2
ds

(90)

× e
− 1

2

∫ u
t

χ2σ2
δ+ε2

(
(λ̂Bs −λ̂As )(f̄−fs)

σf

√
1−ρ2

)2
ds−∫ ut

(
−χσδ ε

(
(λ̂Bs −λ̂As )(f̄−fs)

σf
√

1−ρ2

)
0 0

)
dŴt

.
(91)

Note that last term of the first row cancels the first term of the second row. Importantly, the second
row defines a change of measure. The change of measure is

dP̄
dPB

∣∣∣∣
Ot

≡ νt = e
− 1

2

∫ u
t

χ2σ2
δ+ε2

(
(λ̂Bs −λ̂As )(f̄−fs)

σf

√
1−ρ2

)2
ds−∫ ut

(
−χσδ ε

(
(λ̂Bs −λ̂As )(f̄−fs)

σf
√

1−ρ2

)
0 0

)
dŴt

,

(92)

where the P̄-Brownian motion W̄ is defined as

dW̄t = dŴt + ytdt (93)

yt =

(
−χσδ ε

(
(λ̂Bt −λ̂At )(f̄−ft)

σf
√

1−ρ2

)
0 0

)>
. (94)

Rewriting the problem under the probability measure P̄ yields

F (Zt) ≡ Ēt
[∫ ∞

t
e
∫ u
t Xsdsdu

]
, (95)

where Xt = −β + 1
2

(λ̂Bt −λ̂At )
2
(f̄−ft)

2

σ2
f (1−ρ2)

(
ε2 − ε

)
+ χ

(
ft − 1

2σ
2
δ

)
+ 1

2χ
2σ2
δ . For notational ease, we drop

the index j when defining the function F (.) by keeping in mind that ε = j
α and χ = 1 − α in our

setup. We now transform this expression to obtain a P̄-martingale. We have

F (Zt)e
∫ t
0 XSds +

∫ t

0
e
∫ u
0 Xsdsdu = Ēt

[∫ ∞
0

e
∫ u
0 Xsdsdu

]
≡ M̄t, (96)

where M̄ is a P̄-martingale. Applying Itô’s lemma to the martingale M̄ and setting its drift to zero
yields the following Partial Differential Equation for the function F (Z)

L ZF (Z) + F (Z)X(Z) + 1 = 0, (97)
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where L Z is the P̄-infinitesimal generator with respect to the vector of state variables Z ≡
(f, λ̂A, λ̂B, γ)>.

PDE (97) is solved numerically using the Chebyshev collocation method (Judd, 1998). This
method consists in approximating the function F (Z) as follows:

F (Z) ≈ P (Z) =
I∑
i=0

J∑
j=0

K∑
k=0

L∑
l=0

ai,j,k,lTi (f)Tj

(
λ̂A
)
Tk

(
λ̂B
)
Tl (γ) ,

where Tm is the Chebyshev polynomial of order m. We mesh the roots of the Chebyshev poly-
nomials of order I + 1, J + 1, K + 1, and L + 1 to obtain the interpolation nodes. Furthermore,
these interpolation nodes are such that they cover the 99% confidence interval of each state vari-
able. Substituting P (Z) and its partial derivatives in the PDE and evaluating the latter at the
interpolation nodes yields a system of (I + 1) × (J + 1) × (K + 1) × (L + 1) equations with
(I + 1) × (J + 1) × (K + 1) × (L + 1) unknowns (the coefficients ai,j,k,l). This system is solved
numerically by minimizing the sum of squared PDE residuals at the interpolation nodes.

This method is very accurate even when the order of the Chebyshev polynomials is relatively low.
Indeed, choosing I = J = K = L = 4 yields 54 = 625 interpolation nodes. In our setup, the sum
(over these 625 interpolation nodes) of squared PDE residuals is of order 10−33 only. Furthermore,
simulations show that the orders of the 1-percentile, median, and 99-percentile of squared residuals
are 10−19, 10−15, and 10−12, respectively. This provides evidence that the method is accurate.

A.4 Calibration to the U.S. economy (Maximum Likelihood)

The log dividend growth rate and the fundamental are discretized as follows:

log (δt+∆/δt) ≈
(
ft −

1

2
σ2
δ

)
∆ + σδ

√
∆ε1,t+∆ (98)

ft+∆ ≈ e−λ̂
B
t ∆ft + f̄

(
1− e−λ̂Bt ∆

)
+

σfρ√
2λ̂Bt

(
1− e−2λ̂Bt ∆

)
ε1,t+∆ (99)

+
σf
√

1− ρ2√
2λ̂Bt

(
1− e−2λ̂Bt ∆

)
ε2,t+∆, (100)

where ε1, ε2 ∼ N(0, 1) are i.i.d and ∆ = 1/4 because our dataset is at quarterly frequency. We
fit log (δt+∆/δt) and ft to the realized real GDP growth over the current quarter and median real
GDP growth forecast for the current quarter, respectively.

In the same spirit, Agent A’s forecast at horizon s− t, fAt,s−t, and Agent B’s forecast at horizon

s− t, fBt,s−t, are discretized as follows:

fAt,s−t = EAt (fs) ≈ e−λ̂
A
t (s−t)ft + f̄

(
1− e−λ̂At (s−t)

)
(101)

fBt,s−t = EBt (fs) ≈ e−λ̂
B
t (s−t)ft + f̄

(
1− e−λ̂Bt (s−t)

)
. (102)

Applying Itô’s lemma to Equations (101) and (102), substituting ft by its value extracted from
Equations (101) and (102), and setting s − t = ∆ = 1/4 yields the following dynamics for the
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1-quarter-ahead forecasts computed by Agent A, fAt,∆, and Agent B, fBt,∆

dfAt,∆ = a1(fAt,∆, λ̂
A
t , λ̂

B
t , γt)dt+ b1(fAt,∆, λ̂

A
t , γt)dŴt, (103)

dfBt,∆ = a2(fBt,∆, λ̂
B
t , γt)dt+ b2(fBt,∆, λ̂

B
t , γt)dŴt, (104)

where the drifts a1(.), a2(.) ∈ R and the diffusions b1(.), b2(.) ∈ R4 satisfy

a1(fAt,∆, λ̂
A
t , λ̂

B
t , γt) =

1

2(1− ρ2)σ2
f

(f̄ − fAt,∆)
(
e2∆λ̂At ∆(f̄ − fAt,∆)2γt(∆γt + 2(λ̂At − λ̂Bt )) (105)

−(−1 + ρ2)σ2
f (∆(−2κλ̄+ ∆φ2Φ2) + 2λ̂At + 2∆(γt + κλ̂At )− 2λ̂Bt )

)
, (106)

a2(fBt,∆, λ̂
B
t , γt) =

1

2
∆(f̄ − fBt,∆)

(
2κλ̄−∆φ2Φ2 + γt

(
−2 +

e2∆λ̂Bt ∆(f̄ − fBt,∆)2γt

(−1 + ρ2)σ2
f

)
− 2κλ̂Bt

)
,

(107)

b1(fAt,∆, λ̂
A
t , γt) =


e−∆λ̂At ρσf

e∆λ̂
A
t (−e−2∆λ̂At (−1+ρ2)σ2

f+∆(f̄−fAt,∆)2γt)√
1−ρ2σf

∆φ3Φ(f̄ − fAt,∆)

∆φ
√

1− φ4Φ(f̄ − fAt,∆)


>

, (108)

b2(fBt,∆, λ̂
B
t , γt) =


e−∆λ̂Bt ρσf

e∆λ̂
B
t (−e−2∆λ̂Bt (−1+ρ2)σ2

f+∆(f̄−fBt,∆)2γt)√
1−ρ2σf

∆φΦ(f̄ − fBt,∆)

0


>

. (109)

Discretizing the dynamics in (103) and (104) yields

fAt+∆,∆ = fAt,∆ + a1(fAt,∆, λ̂
A
t , λ̂

B
t , γt)∆ + b1(fAt,∆, λ̂

A
t , γt)

√
∆


ε1,t+∆

ε2,t+∆

ε3,t+∆

ε4,t+∆

 , (110)

fBt+∆,∆ = fBt,∆ + a2(fBt,∆, λ̂
B
t , γt)∆ + b2(fBt,∆, λ̂

B
t , γt)

√
∆


ε1,t+∆

ε2,t+∆

ε3,t+∆

ε4,t+∆,

 (111)

where ε1, ε2, ε3, ε4 ∼ N(0, 1) are i.i.d. Since we consider a 2-agent model, the lowest perceived
value corresponds by definition to the 25th percentile and the highest value to the 75th percentile.
Therefore, we fit fAt,∆ and fBt,∆ to the 75th percentile of the 1-quarter-ahead real GDP growth
forecast and to the 25th percentile of the 1-quarter-ahead real GDP growth forecast, respectively.
That is, agent B is the pessimistic agent and agent A the optimistic one. This assumption is
motivated further in Appendix A.5.

The four time series, namely realized GDP growth, median of the current quarter GDP growth
forecast, 75th percentile of the 1-quarter-ahead GDP growth forecast, and 25th percentile of the 1-
quarter-ahead GDP growth forecast, are available at quarterly frequency from Q4:1968 to Q2:2016
and are obtained from the Federal Reserve Bank of Philadelphia’s website.
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Maximizing the log likelihood function implied by (98), (100), (110), and (111) yields the
parameters and standard errors reported in Table 1. The estimation also provides the historical
model-implied time series of the mean-reversion speed of agent A, λ̂A,e, the mean-reversion speed
of agent B, λ̂B,e, and the uncertainty, γe. The historical time series of the fundamental consists of
the median of the current quarter GDP growth forecast and is denoted by fe ≡ f .

A.5 Historical time series of the state variables

Figure 8 depicts the path of the state variables of the model from Q4:1968 to Q2:2016. These
time series are recovered from the maximum likelihood estimation performed in Section 3.1. Un-
surprisingly, panel (a) shows that the fundamental is particularly low during the NBER recessions
of 1973-1975, 1980-1982, 1990-1991, 2001, and 2007-2009 (gray shaded areas). During these bad
economic episodes, disagreement about the mean-reversion speed of the fundamental, and therefore
about when the recovery will take place, was particularly high. Indeed, the (absolute) difference
between the mean-reversion speeds is around 0.1 during these recessions, and even spikes to 0.2
before and during the recession of 2001.

Furthermore, agent A’s consumption share incurs large drops after the recessions of 2001 and
2007-2009, and ends up below 0.5 at the end of the sample. In other words, agent B slightly
dominates agent A in terms of consumption share, which means that agent B’s beliefs are more
realistic than agent A’s. This result motivates our assumption to fit agent B’s belief (which coincide
with the correct/true belief in our model) to the 25th percentile of the 1-quarter-ahead analyst
forecast and not to the 75th percentile. If we instead had assumed that agent B were the optimistic
agent, then the agent with the correct beliefs (still agent B) would have counterfactually ended up
with a lower share of consumption.

A.6 Model-simulated path of volatility and the state variables

Figure 9 plots one model-simulated path of stock return volatility and the corresponding state
variables. Comparing panels (c) and (f) shows that, in our model, persistence in volatility is
principally generated by persistence in Bayesian uncertainty.
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Figure 8: Historical path of the state variables of the model
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