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a b s t r a c t 

We propose a joint theory of time-series momentum and reversal based on a rational- 

expectations model. We show that a necessary condition for momentum to arise in 

this framework is that information flows at an increasing rate. We focus on word-of- 

mouth communication as a mechanism that enforces this condition and generates short- 

term momentum and long-term reversal. Investors with heterogeneous trading strategies—

contrarian and momentum traders—coexist in the marketplace. Although a significant pro- 

portion of investors are momentum traders, momentum is not completely eliminated. 

Word-of-mouth communication spreads rumors and generates price run-ups and reversals. 

Our theoretical predictions are in line with empirical findings. 
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1. Introduction 

One of the most pervasive facts in finance is price mo-

mentum. It is documented everywhere, both across and

within countries and asset classes. It appears in the cross-

section of returns, where it refers to securities’ relative

performance , but also in the time-series of returns, where

it refers to a security’s own performance . 1 Both forms of

momentum, “cross-sectional momentum” and “time-series

momentum,” are followed by a phase of reversal over

longer horizons. Time-series momentum and reversal are

the focus of this paper. 

Reconciling the existence of short-term momentum and

long-term reversal with a rational explanation is chal-
1 See Rouwenhorst (1998) , Asness, Moskowitz and Pedersen (2013) , 

Jegadeesh and Titman (1993) , and Moskowitz, Ooi and Pedersen (2012) . 

Cross-sectional and time-series momentum are related, but distinct em- 

pirical anomalies. Importantly, Moskowitz, Ooi and Pedersen (2012) show 

that time-series momentum is not fully explained by cross-sectional 

momentum. 

http://dx.doi.org/10.1016/j.jfineco.2016.05.012
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lenging. Rational investors can easily detect predictable 

patterns and trade on them, thereby eliminating them. 

Leading theories of momentum and reversal are therefore 

mostly behavioral. 2 But the weak link between momentum 

and various measures of investor sentiment ( Moskowitz, 

Ooi and Pedersen, 2012 ) indicates that behavioral models 

have yet to identify the main source driving momentum 

and reversal. This paper provides a joint explanation for 

time-series momentum and reversal in which momentum 

arises and persists in the absence of behavioral biases. 

We use a rational-expectations framework ( Grossman 

and Stiglitz, 1980 ) to derive a condition on the “shape”

of information arrival that is necessary for momentum 

to exist. Our building block is an economy in which a 

large population of risk-averse agents trade a risky asset 

over several rounds. Investors observe a flow of private 

information and a flow of public information conveyed by 

equilibrium prices. We introduce the concept of precision 

elasticity , which measures how average market precision 

responds to a change in the average precision of private 

information. Momentum only obtains when precision elas- 

ticity is greater than one, so that average market precision 

increases faster than the precision of private information 

over time. To enforce this condition, private information 

must flow at an increasing rate. We show that momentum 

never obtains when the flow of private information is 

linear, a customary assumption in the literature. 

Among the possible mechanisms that cause information 

to flow at an increasing rate, we focus on word-of-mouth 

communication. In the context of a rational-expectations 

model, word-of-mouth communication represents an 

additional channel of information acquisition. We model 

word-of-mouth communication through the information 

percolation theory ( Duffie and Manso, 2007 ), whereby 

agents exchange information in random, bilateral private 

meetings. Investors therefore trade in centralized markets, 

but also search for each other’s private information—

trading is centralized, but information exchange is partially 

decentralized. 

When embedded into a centralized trading model, in- 

formation percolation has two effects. First, the percolation 

mechanism dictates how average market precision evolves 

over time. As agents accumulate information through ran- 

dom meetings, the average precision of information in 

the economy increases at an accelerated—exponential—

rate. Beyond a certain threshold of the intensity at which 

agents meet and talk, this exponential increase in precision 

generates short-term momentum and long-term reversal. 

We fully characterize this critical threshold of the meeting 

intensity. 

Second, the percolation mechanism dictates how indi- 

vidual precisions are distributed across agents. Through the 

meeting process, agents acquire heterogeneous amounts 
2 These theories propose various behavioral biases to generate momen- 

tum and reversal: “momentum traders,” “conservative investors,” or “at- 

tribution bias” generate momentum, whereas “newswatchers,” “represen- 

tativeness heuristic,” or “overconfidence” generate reversals. See Barberis, 

Shleifer and Vishny (1998) , Daniel, Hirshleifer and Subrahmanyam (1998) , 

and Hong and Stein (1999) . 
of information, which causes them to implement different 

trading strategies. We first show that the “average agent”

in our model is neutral to the market—she is not a mo- 

mentum trader, nor a contrarian. It follows that, with- 

out information percolation, all investors in our model 

are market neutral. Information percolation, instead, al- 

lows agents’ precision to differ from average market pre- 

cision. In this case, the distance between agents’ precision 

and average market precision determines agents’ strategies. 

Agents who are better informed than the average agent are 

contrarians, while others are momentum traders. Although 

everyone (including the econometrician) observes momen- 

tum, better informed investors trade against it, thus allow- 

ing momentum to persist in the presence of momentum 

traders. 

We argue that word-of-mouth communication is a 

plausible mechanism, as it produces several predictions 

that are supported by empirical evidence. Our model can 

simultaneously generate short-term momentum and long- 

term reversal ( Moskowitz, Ooi and Pedersen, 2012 ) and 

a hump-shaped pattern of momentum, similar to that 

documented by Hong, Lim and Stein (20 0 0) . Moreover, 

our model is consistent with the empirical finding that 

stock returns exhibit strong reversals at shorter horizons 

( Jegadeesh, 1990; Lehmann, 1990 ) and with empirically 

documented trading strategies ( Grinblatt, Jostova, Petrasek 

and Philipov, 2016 ). 

We extend our model along three dimensions. A first 

extension is based on the idea that word-of-mouth com- 

munication is a natural propagator of rumors ( Shiller, 

20 0 0 ). When private information contains a rumor, this ru- 

mor circulates among investors, who are aware of its exis- 

tence but cannot observe it, creating a disconnect between 

the stock price and the fundamental. Ultimately, the rumor 

subsides, leading to a price reversal. Second, while we de- 

rive our results in a model with a finite horizon, we show 

that they carry over to a fully dynamic setup. In particular, 

momentum obtains whether the asset pays a single liqui- 

dating dividend or an infinite stream of dividends. Finally, 

in the appendix ( Section C.4 ), we introduce a large, un- 

constrained, risk-neutral arbitrageur who could conceivably 

eliminate momentum. We find that this is not the case—

the arbitrageur must also consider that her trades move 

prices adversely. 

Among the large theoretical literature on momentum, 

leading rational theories are based on growth-options 

models ( Berk, Green and Naik, 1999; Johnson, 2002; 

Sagi and Seasholes, 2007 ). Our theory abstracts from 

firm decisions and directly builds on information trans- 

mission as a driver of investors’ decisions and thereby 

of stock returns. 3 Previous rational-expectations models 
3 We believe that private exchange of information is linked to momen- 

tum for several reasons. First, private information is an important driver 

of stock price variations ( French and Roll, 1986 ) and provides an incen- 

tive for investors to implement heterogeneous trading strategies. Public 

news, instead, do not predict prices ( Roll, 1988 ), nor do they explain price 

changes ( Chan, Fong, Kho and Stulz, 1996 ) or generate trading hetero- 

geneity ( Mitchell and Mulherin, 1994; Gropp and Kadareja, 2012; Tetlock, 

2010; Koudijs, 2016 ). Second, word-of-mouth communication is an innate 
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( Holden and Subrahmanyam, 2002; Cespa and Vives, 2012 )

suggest that an increase in information precision generates

momentum. Our model offers a unified explanation for

short-term momentum, long-term reversal, and the persis-

tence of momentum, despite the presence of investors who

profitably trade on it. Albuquerque and Miao (2014) show

that “advance information” produces momentum in a dy-

namic model. Importantly, our model delivers opposite

conclusions regarding trading strategies: in Albuquerque

and Miao (2014) informed investors are contrarians and

uninformed investors are momentum traders, a difference

that could be used to distinguish both theories empiri-

cally. As in Biais, Bossaerts and Spatt (2010) , investors in

our model follow different investment strategies and ex-

tract information from prices. Our focus, however, is on

the role that word-of-mouth communication plays in gen-

erating momentum and reversal. 4 We adopt the defini-

tion of “price drift,” as well as portfolio decompositions

from Banerjee, Kaniel and Kremer (2009) , who show that

stock returns can exhibit momentum when investors have

higher-order differences of opinions. 

Finally, among the well-established behavioral explana-

tions of momentum, Barberis, Shleifer and Vishny (1998) ,

Daniel, Hirshleifer and Subrahmanyam (1998) , and Hong

and Stein (1999) are related to this paper. Hong and Stein

(1999) show that the slow diffusion of information leads

to underreaction. Our theory differs in two key respects.

First, we show that learning from prices is instrumen-

tal in generating momentum in our model, whereas mo-

mentum does not obtain in Hong and Stein (1999) if

investors learn from prices. Second, we do not assume

that investors follow different trading strategies, but rather

let investors optimally decide whether they want to be

momentum traders or contrarians. Barberis, Shleifer and

Vishny (1998) and Daniel, Hirshleifer and Subrahmanyam

(1998) introduce two behavioral biases, one of which ex-

plains momentum and the other reversal. Our model ab-

stracts from behavioral biases and simultaneously explains

momentum and reversal solely based on information per-

colation. Our work complements existing behavioral theo-

ries, as information percolation and behavioral biases could

reinforce each other. 

The remainder of the paper is organized as follows.

Section 2 presents and solves the model, Sections 3 and 4
channel of information processing, “a central part of economic life ” ( Stein, 

2008 ), and plays an important role in stock market fluctuations and in 

investors’ decisions ( Shiller, 20 0 0; Shiller and Pound, 1989; Grinblatt and 

Keloharju, 2001; Hong, Kubik and Stein, 2004; Feng and Seasholes, 2004; 

Ivkovic and Weisbenner, 2005; Brown, Ivkovic, Smith and Weisbenner, 

2008; Shive, 2010; Cohen, Frazzini and Malloy, 2008 ). Furthermore, ev- 

idence suggests that word-of-mouth communication is related to mo- 

mentum: momentum profits are decreasing in analyst coverage, support- 

ing the notion that momentum is caused by slow information diffusion 

( Hong, Lim and Stein, 20 0 0; Hou and Moskowitz, 2005; Verardo, 2009 ). 
4 Biais, Bossaerts and Spatt (2010) build a dynamic model in which mo- 

mentum may arise depending on the relative persistence of the funda- 

mental and noise trading risk. Instead, in our model, persistence arises 

endogenously through the acceleration of information through word-of- 

mouth communication among investors. Other papers related to momen- 

tum, but unrelated to social interactions and information diffusion, in- 

clude Vayanos and Woolley (2013) , Makarov and Rytchkov (2012) , and 

Wang (1993) . 

 

 

 

 

 

contain the main results on momentum and momentum

trading, Section 5 presents extensions of the model, and

Section 6 concludes. All proofs are provided in the ap-

pendix. 

2. Information percolation in centralized markets 

In this section, we build a model of centralized trading

(a noisy rational-expectations equilibrium) with decentral-

ized information gathering (information percolation). We

start by describing the information diffusion mechanism. 

2.1. Information percolation 

Consider an economy with T trading dates, indexed by

t = 0 , 1 , . . . , T − 1 , and a final liquidation date, T . The econ-

omy is populated by a continuum of investors indexed by

i ∈ [0, 1]. There is a risky security with payoff ˜ U realized

at the liquidation date. The payoff of this security is unob-

servable and follows a normal distribution with zero mean

and precision H . 5 

Immediately prior to trading session t = 0 , each in-

vestor i obtains a private signal about the asset payoff, ̃  z i : 

 z i = ̃

 U + ̃

 ε i , (1)

where ˜ ε i is distributed normally and independently of ˜ U ,

has zero mean, precision S , and is independent of ˜ εk if k

� = i . The precision of individual private signals is the same

across investors. 

We now introduce a mechanism that causes informa-

tion to flow at an increasing rate and information precision

to become heterogeneous across agents. To do so, we use

the information percolation theory ( Duffie, Malamud and

Manso, 2009 ). From date t = 0 onward, agents meet each

other randomly and share their information. Meetings take

place continuously at Poisson arrival times with intensity

λ—the only parameter we add to this standard equilibrium

model. 

When agents meet, they exchange their initial signal

and other signals that they received during previous meet-

ings (if any). This assumption is simply a matter of conven-

tion, since incomplete exchange of information can always

be incorporated by scaling the meeting intensity. 6 More-

over, agents are infinitesimally small and therefore are in-

different between telling the truth or lying—if they attempt

to lie, they will not be able to move prices, and therefore

will not benefit from their lies. For this reason, we assume

that they tell the truth. 7 This assumption along with the
5 We refer to the precision of a random variable as the inverse of its 

variance. The zero mean assumption is without loss of generality. 
6 A stylized way of incorporating incomplete exchange of information 

is to assume that agents share nothing with probability p or share their 

entire set of signals with probability 1 − p. In this case, the meeting in- 

tensity can be reinterpreted as ̂  λ ≡ λ(1 − p) . While incomplete exchange 

of signals dampens the effect of percolation, the increase in the cross- 

sectional average number of signals remains exponential (as we will show 

shortly in Proposition 1 ). This exponential increase is the crucial feature 

which leads to our main results. 
7 While infinitesimal agents do not have a strict incentive to tell the 

truth in centralized markets, a large but finite number of agents may. Pos- 

sible incentives to tell the truth include, for instance, short-term invest- 
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normality of individual signals imply that an agent’s pri- 

vate information is completely summarized by two statis- 

tics: her total number of signals and her posterior expec- 

tation of the fundamental. These two statistics are suffi- 

cient for the information agents actually exchange when 

they meet and “talk.”

To illustrate how information percolation works, pick 

two agents—say D and J —out of the crowd. D and J start 

with one signal. Suppose the first time they meet someone, 

they meet each other. They exchange their signals truth- 

fully and therefore end up with two signals after the meet- 

ing. Suppose further that D meets someone else, say M , 

who also has two signals (i.e., M also met someone before). 

Since D and M are part of an infinite crowd of agents, the 

person that M has met cannot be J , it must be someone 

else, i.e., meetings do not overlap. 8 Hence, after the meet- 

ing, D and M both part with four signals each. Signals keep 

on adding up randomly in the exact same way for every 

agent in the economy. 

Random meetings introduce heterogeneity in informa- 

tion precisions: while agents start off holding one signal, 

they end up with different numbers of signals as soon 

as they meet and talk. This heterogeneity is captured by 

the cross-sectional distribution of the number of addi- 

tional signals, π t . Formally, between trading dates t − 1 

and t , each agent i collects a number ω 

i 
t ∈ N of signals, ex- 

cluding the signals she received up to and including time 

t − 1 . 9 An important statistic in this economy is the cross- 

sectional average of the number of additional signals at 

time t : 

�t ≡
∑ 

n ∈ N 
πt ( n ) n. (2) 

Since agents are initially endowed with a single signal, 

the initial distribution of signals has 100% probability mass 

at n = 1 , and therefore ω 

i 
0 

= �0 = 1 , ∀ i ∈ [0, 1]. As infor-

mation diffuses (at dates t > 0), the distribution π t takes 

values over N . For example, an agent who did not meet 

anyone between t − 1 and t is of type n = 0 ; an agent who 

collected ten signals between t − 1 and t is of type n = 10 , 

and so on. Following Duffie, Malamud and Manso (2009) , 

the cross-sectional distribution of the number of additional 

signals satisfies 
ment horizons ( Schmidt, 2015 ), reputation ( Benabou and Laroque, 1992 ), 

complementarity in information sets ( Stein, 2008 ), the presence of highly 

connected agents in the market ( Acemoglu, Bimpikis and Ozdaglar, 2014 ), 

or coordination motives ( Abreu and Brunnermeier, 2002 ). 
8 In other words, there is a zero probability that the set of agents that 

D has met before time t overlaps with the set of agents that J has met 

before time t . This eliminates the concern that we are introducing per- 

suasion bias in the terms of Demarzo, Vayanos and Zwiebel (2003) : an 

agent might share her signals to another agent who passes those signals 

at subsequent meetings to other agents and maybe the same signals will 

come back to the first agent—without her knowledge. The infinite mass 

of agents prevents this double accounting of signals to happen, since the 

probability for an agent to meet in the future precisely those agents who 

got her signals is zero. Thus, for every pair ( i, j ) of agents, their signal sets 

are always disjoint prior to their meeting. 
9 Notice that both the distribution over the total number of signals 

and the distribution over additional signals may be equivalently used; we 

choose to use distribution of additional signals because it helps us bet- 

ter separate and understand the effects of information percolation on the 

equilibrium price and trading strategies. 
d 

d t 
πt (n ) = λπt ∗ μt − λπt 

= λ
n −1 ∑ 

m =1 

πt (n − m ) μt (m ) − λπt (n ) , (3) 

where “∗” denotes the discrete convolution product and 

μ represents the cross-sectional distribution of the total 

number of signals, which we define in Appendix A.1 . The 

summation term on the right-hand side in (3) represents 

the rate at which new agents of a given type are created, 

whereas the second term in (3) captures the rate at which 

agents leave a given type. 

This setup leads to a closed-form solution for both the 

cross-sectional distribution π t and the cross-sectional av- 

erage of the number of additional signals �t . 

Proposition 1 . At time t ∈ { 1 , 2 , . . . , T − 1 } , the probability 

density function π t over the additional number of signals col- 

lected by agents between t − 1 and t is given by 

πt (n ) = 

{
e −λ if n = 0 

e −nλt (e λt − 1) n −1 (1 − e −λ) if n ≥ 1 . 
(4) 

The cross-sectional average of the number of additional sig- 

nals at time t is given by 

�t = e (t−1) λ(e λ − 1) . (5) 

Fig. 1 illustrates the evolution of the cross-sectional dis- 

tribution of both the total number of signals μt ( n ) (the 

left-hand side) and the additional number of signals π t ( n ) 

(the right-hand side). The meeting intensity is set at λ = 1 

and each distribution is depicted at times t = 1 and t = 2 .

The distribution of the total number of signals is defined 

over N 

∗, whereas the distribution of the additional num- 

ber of signals is defined over N . For both distributions, the 

average precision and the precision heterogeneity change 

over time. First, the mass of the distributions gradually 

shifts towards larger number of signals. As a result, the av- 

erage number of signals, and therefore the average preci- 

sion, increases over time. Second, while both distributions 

are initially concentrated at n = 1 (each agent starts off

with one signal), they rapidly spread to reflect the grow- 

ing heterogeneity in precision across the population. This 

heterogeneity itself varies through time. 10 

2.2. The economy 

We now describe the structure of the economy. The 

main difference with a standard rational-expectations 

model ( Grossman and Stiglitz, 1980 ) is that we allow the 

precision of information to increase over time and to differ 

across agents. 

Investors have exponential utility with common coef- 

ficient of absolute risk aversion 1/ τ , where τ denotes in- 

vestors’ risk tolerance. The asset payoff is realized and con- 

sumption takes place at time t = T , while trading takes 
10 Other aspects are worth mentioning. First, the two distributions have 

identical shapes at t = 1 , although their respective support differs. Sec- 

ond, the cross-sectional distribution of additional number of signals as- 

signs the same probability mass at n = 0 at all times, as shown in (4) ; 

these are investors who did not meet anyone during the last period and 

consequently end up with zero additional signals. 
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Fig. 1. Evolution of cross-sectional densities. The left-hand side panels depict the evolution of the probability density function over the total number of 

signals μ( ·) through time. The right-hand side panels depict the evolution of the probability density function over the additional number of signals π ( ·) 
through time. We fix λ = 1 for this illustration. 
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place at times t = 0 , 1 , . . . , T − 1 . Each investor i is en-

dowed at time t = 0 with a quantity of the risky asset rep-

resented by X 

i . At each trading date, investor i chooses a

position in the risky asset, ˜ D 

i 
t , to maximize her expected

utility of terminal wealth, denoted by ˜ W 

i 
T 

: 

max ˜ D i t 

E 

[ 
e −

1 
τ
˜ W 

i 
T |F 

i 
t 

] 
, 

subject to 

˜ W 

i 
T = X 

i ˜ P 0 + 

T −2 ∑ 

t=0 

[˜ D 

i 
t 

(˜ P t+1 − ˜ P t 
)]

+ ̃

 D 

i 
T −1 

(˜ U − ˜ P T −1 

)
. (6)

The information set of investor i at time t , F 

i 
t , contains

private signals collected through information percolation,

and prices (endogenously determined in equilibrium and

denoted by ˜ P t ) as public signals. 11 

The aggregate per capita supply of the risky asset at

time t = 0 , ˜ X 0 = 

∫ 1 
0 X i di, is normally and independently

distributed with zero mean and precision �. New liquidity

traders enter the market in trading sessions t = 1 , . . . , T −
1 . The incremental net supply of liquidity traders, ˜ X t , is

normally distributed with zero mean and precision �. 

The noisy supply prevents asset prices from fully re-

vealing the final payoff ˜ U . We adopt a random walk spec-

ification for the noisy supply, i.e., the total supply at time

t is 
∑ t 

j=0 ̃
 X j . 

12 Under this specification and in the absence

of additional private information at dates t ≥ 1, prices are

martingales. As a result, any pattern in the correlation of

returns depends only on the pattern of private information

arrival. That is, our setup allows us to isolate the link be-

tween the diffusion of information and the serial correla-

tion of returns. 13 
11 Our model bears similarities with Brennan and Cao (1997) , with 

the main difference that it embeds an information diffusion mechanism. 

To keep the setup comparable to leading momentum theories, such as 

Daniel, Hirshleifer and Subrahmanyam (1998) and Hong and Stein (1999) , 

we focus on a single asset economy, featuring several trading dates and a 

final liquidation date. 
12 Equivalently, we assume that increments in the noisy supply are inde- 

pendent and identically distributed, which is likely to happen when time 

between consecutive trading dates is small. 
13 Other specifications, such as an AR(1) noise trading process, give 

qualitatively similar results, but complicate unnecessarily the analysis. 

 

 

 

 

 

 

 

 

The solution method for finding a linear, partially re-

vealing rational-expectations equilibrium is standard and

is relegated to Appendix A.2 . We describe the equilibrium

below. 

2.3. Equilibrium 

We first introduce notation and terminology for further

use. At each date t , agent i receives ω 

i 
t new signals. From

Gaussian theory, these signals are equivalent to a single

signal with precision Sω 

i 
t . We denote this signal by ̃  Z i t : 

 Z i t = ̃

 U + ε i t , where ε i t ≡
( 

1 

ω 

i 
t 

ω i t ∑ 

j=1 ̃

 ε j 

) 

∼ N 

(
0 , 

1 

Sω 

i 
t 

)
. 

(7)

The conditional precision of agent i about the final payoff˜ 

 , given all available information, is denoted by K 

i 
t , 

K 

i 
t ≡ Var −1 

[˜ U |F 

i 
t 

]
, (8)

whereas the cross-sectional average of conditional preci-

sions over the entire population of agents is denoted by

K t , 

K t ≡
∑ 

n ∈ N 
K 

i 
t (n ) πt (n ) . (9)

Throughout the paper, we will often refer to the “av-

erage agent” as the agent whose precision of information

equals the average precision at time t, K t . Note that, with-

out information percolation, the average agent represents

any agent in the economy, because K 

i 
t = K t , ∀ i, t . Finally,

we refer to the normalized price signals as 

˜ Q t ≡ ˜ U − 1 

τS�t ̃

 X t . (10)

Observing the signals { ̃  Q j } t j=0 
or past prices { ̃  P j } t j=0 

gen-

erates equivalent information sets. These information sets

represent the information available to an econometrician

at time t . We denote the precision of the econometrician,

conditional on any of these two common information sets,

by K 

c 
t . 

Theorem 2.1 describes the risky asset prices at each

date in a noisy rational-expectations equilibrium with in-

formation percolation. 
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Theorem 2.1 (Equilibrium) . There exists a partially reveal- 

ing rational-expectations equilibrium in the T trading ses- 

sion economy in which the price of the risky asset, ˜ P t , for 

t = 0 , . . . , T − 1 , is given by: 

˜ P t = 

K t − H 

K t 

˜ U −
t ∑ 

j=0 

1 + τ 2 S� j �

τK t 

˜ X j . (11) 

The individual and average market precisions, K 

i 
t and K t , are 

given by 

K 

i 
t = H + 

t ∑ 

j=0 

Sω 

i 
j + 

t ∑ 

j=0 

τ 2 S 2 �2 
j �, (12) 

K t = H + 

t ∑ 

j=0 

S� j + 

t ∑ 

j=0 

τ 2 S 2 �2 
j �, (13) 

and the precision of the econometrician is given by 

K 

c 
t = H + 

t ∑ 

j=0 

τ 2 S 2 �2 
j �. (14) 

The individual asset demands, ˜ D 

i 
t , are given by ˜ D 

i 
t = τK 

i 
t 

(
E [ ̃  U |F 

i 
t ] − ˜ P t 

)
(15) 

= τ

⎛ ⎜ ⎜ ⎜ ⎝ 

S 

t ∑ 

j=0 

ω 

i 
j ̃

 Z i j ︸ ︷︷ ︸ 
Private information 

+ τ 2 S 2 �
t ∑ 

j=0 

�2 
j ̃

 Q j ︸ ︷︷ ︸ 
Public information 

−K 

i 
t ̃

 P t 

⎞ ⎟ ⎟ ⎟ ⎠ 

. (16) 

The asset price in Eq. (11) is a linear function of the fi- 

nal payoff and supply shocks, as is customary in the noisy 

rational-expectations literature. Following the interpreta- 

tion in Wang (1993) , the second term in (11) is a dis- 

count on the price that compensates informed investors 

for bearing noise trading risk: as noise traders sell (i.e., 

the supply increases), the price decreases through the dis- 

count, which generates a higher risk premium and thus in- 

duces investors to hold more stocks. The size of this risk 

premium is inversely related to average market precision, 

because higher information precision reduces the risk of 

holding the asset. 14 

Setting λ equal to zero we obtain an economy in which 

average precision is constant ( �0 = 1 , �t = 0 ∀ t ≥ 1 ) and 

agents have identical precisions ( K 

i 
t = K t , ∀ i, t). This econ- 

omy serves as our benchmark model. In contrast, when 

λ > 0, the average precision increases exponentially over 

time, as can be seen by replacing � j = e ( j−1) λ(e λ − 1) in 

(13) , and agents become heterogeneous with respect to 

their information precision. Finally, Eq. (16) shows how 

agents build their demands based on private and public in- 

formation, a standard decomposition in the noisy rational- 

expectations literature (e.g., Brennan and Cao, 1997 ). 
14 This negative relationship is consistent with empirical findings. In 

particular, there is consensus in the accounting literature that increasing 

the precision of information reflected in prices decreases the cost of cap- 

ital ( Lambert, Leuz and Verrecchia, 2011 ). See also Botosan, Plumlee and 

Xie (2004) , Francis, LaFond, Olsson and Schipper (2005) , and Amir and 

Levi (2014) . 
3. Momentum and reversal 

In this section we analyze the implications of the in- 

crease in average precision caused by information perco- 

lation for the serial correlation of returns. In the bench- 

mark model (λ = 0) , the average precision is constant 

over time and prices are martingales. Return predictability 

arises only if agents gather new private information over 

time ( λ > 0). In this case, we derive a general condition 

on the “shape of learning” that is necessary for momen- 

tum to arise in a rational-expectations model. We then de- 

scribe how information percolation can enforce this condi- 

tion beyond a certain threshold of the meeting intensity, 

which we fully characterize. We finally relate our theoreti- 

cal predictions to existing empirical evidence. 

3.1. Predictability of returns 

The following proposition establishes the condition un- 

der which future returns are predictable. 

Proposition 2 . Agent i’s expectation regarding future returns 

conditional on F 

i 
t satisfies: 

E 

[˜ P t+1 − ˜ P t 
∣∣F 

i 
t 

]
= 

K t+1 − K t 

K t+1 ︸ ︷︷ ︸ 
≥0 

(
E 

[˜ U 

∣∣F 

i 
t 

]
− ˜ P t 

)
. (17) 

Returns are predictable only if average market precision is 

strictly increasing over time. 

The first term in Eq. (17) represents the relative evolu- 

tion of average market precision K over time. Clearly, if av- 

erage market precision is constant, prices are martingales 

and no agent, even perfectly informed, can predict future 

returns. If, instead, average market precision increases over 

time, Eq. (17) shows that an agent can predict future re- 

turns by comparing the current price she observes to her 

current expectation of the fundamental. When she per- 

ceives that the stock is overvalued, she predicts negative 

future returns; when she perceives that the stock is under- 

valued, she predicts positive future returns. 

Future returns can be further decomposed into three 

main sources of predictability, as we show in Proposition 3 . 

Proposition 3 . Stock returns from time t to time t + 1 admit 

the following decomposition: ˜ P t+1 − ˜ P t = 

(
E t+1 [ ̃  U ] − E t [ ̃  U ] 

)︸ ︷︷ ︸ 
Evolution of market consensus 

+ 

K t+1 − K t 

τK t K t+1 

t ∑ 

j=0 ̃

 X j ︸ ︷︷ ︸ 
Past and current 

supply shocks 

− 1 

τK t+1 

˜ X t+1 ︸︷︷︸ 
Future 

supply shock 

(18) 

where E t [ ·] ≡
∫ 

i E [ ·|F 

i 
t ] d i denotes the weighted average mar- 

ket expectation at time t: 

E t [ ̃  U ] = 

∫ 1 

0 

K 

i 
t E [ ̃  U |F 

i 
t ] 

K t 
di. (19) 

Three elements drive future returns: (i) the evolution of 

the market consensus, (ii) current and past supply shocks, 
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and (iii) the supply shock occurring in the future. 15 Notice

that no agent, even perfectly informed, can predict future

supply shocks. Hence, predictability must arise through the

first two components of returns. In general, agents’ ex-

pectations regarding these two components differ, because

they have heterogeneous information sets. Agents, how-

ever, share a common information set F 

c 
t , which consists

of the history of normalized price signals 

F 

c 
t = 

{˜ Q j : 0 ≤ j ≤ t 
}
, (20)

and is equivalent to the information set of the econometri-

cian, who observes all past prices. From the point of view

of the econometrician, the evolution of market consensus

is not predictable (see Appendix B.3 for a proof): 

E 

[
E t+1 [ ̃  U ] − E t [ ̃  U ] 

∣∣F 

c 
t 

]
= 0 . (21)

Therefore, observing past prices only, predictability arises

exclusively through the inference of the current and past

supply shocks, a result we summarize in the following

proposition. 

Proposition 4 . From the point of view of the econometrician,

return predictability arises solely from the inference of current

and past supply shocks: 

E 

[˜ P t+1 − ˜ P t 
∣∣F 

c 
t 

]
= 

K t+1 − K t 

τK t K t+1 

t ∑ 

j=0 

E 

[˜ X j 

∣∣F 

c 
t 

]
(22)

= 

K t+1 − K t 

K t+1 K 

c 
t 

t ∑ 

j=0 

S� j 

(˜ P t − ˜ Q j 

)
. (23)

Proposition 4 highlights the relation between public in-

formation and expected returns. However, the relation in

(23) is not based on a standard definition of past returns.

While observationally equivalent, the common information

set F 

c has a different economic meaning than the informa-

tion set containing all past returns: 

F 

r 
t = 

{˜ P t−l+1 − ˜ P t−l : 1 ≤ l ≤ t + 1 

}
(24)

where ˜ P −1 = �−1 ≡ 0 and K −1 ≡ H. We therefore follow

the convention introduced by Banerjee, Kaniel and Kremer

(2009) and condition future returns on past returns, as op-

posed to the common information set F 

c . We obtain from

Eq. (23) an expression for the serial correlation of returns

at different lags. 

Proposition 5 . Conditional on past returns, expected future re-

turns satisfy 

E 

[˜ P t+1 − ˜ P t 
∣∣F 

r 
t 

]
= 

t+1 ∑ 

l=1 

K t+1 − K t 

K t+1 K 

c 
t 

m t−l ︸ ︷︷ ︸ 
Serial correlation of returns 

at the l-th lag 

(˜ P t−l+1 − ˜ P t−l 

)
, (25)
15 Alternatively, supply shocks can be interpreted as ˜ X j = −τS� j ( ̃  Q j −˜ 
 ) , where ˜ Q j − ˜ U represents the forecast error that the market makes 

at time j in estimating the fundamental (a positive error means that the 

market overvalues the fundamental and vice versa). Market errors are in- 

dependent across time and are normally distributed with mean zero and 

precision τ 2 S 2 �2 
j 
�. Substituting supply shocks by market errors in the 

decomposition in (18) yields an alternative interpretation of return pre- 

dictability in terms of information, as opposed to risk. These two inter- 

pretations of return predictability—information and risk—can be viewed 

as two sides of the same coin. 

 

 

 

 

 

 

 

where the coefficients m t−l , for lags l = 1 , . . . , t + 1 , are de-

fined as: 

m t−l ≡
t−l ∑ 

k =0 

S�k ︸ ︷︷ ︸ 
Momentum 

effect 

− S�t−l+1 

( K t−l+1 − K t−l ) /K t−l ︸ ︷︷ ︸ 
Reversal 

effect 

. (26)

To understand the sign of the serial correlation coef-

ficient m in (25) , consider the first lag, l = 1 , and use

Proposition 3 to write current returns as 

˜ P t − ˜ P t−1 = E t [ ̃  U ] − E t−1 [ ̃  U ] + 

K t − K t−1 

τK t−1 K t 

t−1 ∑ 

j=0 ̃

 X j −
1 

τK t ̃

 X t . 

(27)

Eqs. (18) and (27) then reveal that the current supply

shock, ˜ X t , moves current and future returns in opposite di-

rections, generating reversal in stock returns. This result

originates from inventory considerations ( Grossman and

Miller, 1988 ). Because risk-averse informed investors act

as market makers and accommodate the noninformational

demand of noise traders, they require a risk premium for

holding the asset. As a result, current supply shocks create

a negative relation between current and future returns. For

instance, a positive supply shock today (i.e., noise traders

sell the stock) simultaneously decreases the stock price

and increases the risk premium for holding a larger sup-

ply of the asset. Similarly, a negative supply shock today

leads to high current returns and low future returns. While

the current supply shock generates reversal, past supply

shocks, ( ̃  X j ) 
t−1 
j=0 

, produce momentum in stock returns. In

particular, Eqs. (18) and (27) show that the coefficients of

past supply shocks are always nonnegative. The reason is

that the market continues to “absorb” past supply shocks

in future trading rounds. 

Whether the reversal effect of the current supply shock

or the momentum effect of past supply shocks in Eq. (26)

dominates determines the sign of the serial correlation of

stock returns at the l th lag (equivalently, the sign of the

coefficient m t−l ). First, the momentum effect strengthens

as private signals “accumulate.” Second, the reversal effect

also strengthens with the accumulation of private signals

(numerator), but weakens as average market precision

increases (denominator). For momentum to arise, the

increase in average market precision must be sufficiently

large to restore the balance in favor of the momentum

effect. 

To determine the necessary condition on the increase in

average market precision that enforces momentum, we in-

troduce the concept of precision elasticity. This concept re-

lies on the average precision of private information at time

t , S �t , where �t ≡
∑ t 

j=0 � j denotes the total number of

private signals that the average agent holds at time t . 

Definition 1 (Precision elasticity) . Precision elasticity at time

t is the percentage change of average market precision, K t ,

relative to a percentage change in the average precision of

private information, S �t : 
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εt ≡ (K t+1 − K t ) /K t 

(S �t+1 − S �t ) / (S �t ) 

= 

∑ t 
j=0 S� j 

H + 

∑ t 
j=0 S� j + 

∑ t 
j=0 γ

2 S 2 �2 
j 
�

(
1 + γ 2 S�t+1 �

)
. 

(28) 

Precision elasticity is a general concept that charac- 

terizes the “shape of learning” in a rational-expectations 

model. It measures how average market precision responds 

to a change in the average precision of private information. 

Eq. (28) shows that this response is always positive. 

Importantly, precision elasticity is lower than one if in- 

formation arrives at a linear rate (i.e., if �t ≡ �, for all 

t ), 

εt | �t ≡� = 1 − H 

H + S�(1 + τ 2 S��)(t + 1) 
≤ 1 , (29) 

a customary assumption in rational-expectations models. 

In contrast, for momentum to obtain, precision elastic- 

ity must be higher than one, a condition we establish in 

Theorem 3.1 . 

Theorem 3.1 (Momentum condition). Returns exhibit mo- 

mentum at the lth lag if and only if precision elasticity at 

lag l ≤ t is higher than one: 

εt−l > 1 . (30) 

At lag l = t + 1 , the serial correlation of returns is always 

negative or zero. 

The main implication of Theorem 3.1 is that learning 

must have a specific “shape” for momentum to arise in a 

rational-expectations model—the precision elasticity needs 

to be greater than one so that the percentage increase in 

average market precision exceeds the percentage increase 

in the precision of private information. 

Learning from prices is instrumental in generating this 

pattern. Theorem 2.1 shows that the price-learning chan- 

nel improves investors’ precision by the square of the in- 

cremental number of private signals, �j , j = 1 , . . . , t . This 

quadratic increase precisely allows learning from prices to 

create a larger increase in average market precision rela- 

tive to the precision of private information. It follows that 

learning from prices is the main channel through which 

momentum arises in this model. To emphasize the par- 

ticularity of this result, notice that in Hong and Stein 

(1999) momentum does not obtain if investors learn from 

prices. 

Learning from prices is necessary, but not sufficient 

to produce momentum. Not only does momentum re- 

quire the price-learning channel for average market preci- 

sion to increase faster than the flow of private informa- 

tion, it also requires the flow of private information to 

have the “right dynamics.” For instance, Theorem 3.1 and 

Eq. (29) show that momentum never arises in a standard 

rational-expectations model when the flow of private in- 

formation is linear. We now study how information perco- 

lation can generate dynamics that enforce the condition in 

(30) through an exponential increase in the average num- 

ber of signals. 
3.2. Information percolation and momentum 

We formalize the effect of information percolation on 

the serial correlation of returns and show that the momen- 

tum condition in Eq. (30) is always satisfied beyond a cer- 

tain threshold of the meeting intensity. 

Theorem 3.2 . For each horizon t − l ≥ 0 , 

1. There exists a unique threshold, λ� (H, S, �, τ, t − l) ∈ (
0 , log 

(
2 + 

H 
�τ2 S 2 

)]
, of the meeting intensity above which 

stock returns always exhibit momentum. This threshold 

satisfies the following implicit equation: 

λ� (H, S, �, τ, t − l) = ln 

(
K t−l+1 

K t−l 

)
. (31) 

2. The threshold λ� (H, S, �, τ, t − l) is increasing in H and 

decreasing in S, �, τ , and t − l. 

3. Returns are martingales when λ = 0 or when λ → ∞ . 

The first part of Theorem 3.2 characterizes the thresh- 

old λ� of the meeting intensity above which informa- 

tion percolation creates momentum in stock returns. This 

threshold directly follows from the momentum condition 

of Theorem 3.1 . At the threshold λ� of the meeting inten- 

sity, Eq. (31) is exactly satisfied, precision elasticity is equal 

to one, and returns are martingales: the (logarithmic) in- 

crease in the precision of private information coincides 

with the (logarithmic) increase in average market preci- 

sion. As a result, when the meeting intensity is below λ� , 

the increase in the precision of private signals dominates, 

precision elasticity is less than one, and returns therefore 

exhibit reversals; when the meeting intensity is above λ� , 

the increase in average market precision dominates, preci- 

sion elasticity is higher than one, and thus returns exhibit 

momentum. 

The second part of Theorem 3.2 shows how the thresh- 

old λ� reacts to changes in the parameters of the model. 

An increase in fundamental precision requires stronger in- 

formation percolation to generate momentum, whereas the 

other parameters have the opposite effect. For instance, de- 

creasing noise trading helps information percolation gener- 

ate momentum. Less noise trading allows more informa- 

tion to be revealed through prices, which decreases the 

risk premium and the reversal effect associated with it. A 

similar reasoning applies to risk aversion and the precision 

of individual signals. 

The momentum threshold decreases with the horizon 

t − l and therefore increases with the lag l . Hence, as we 

increase the lag, we need a higher meeting intensity to 

generate momentum, i.e., λ� (·, t − l − 1) > λ� (·, t − l) . An 

immediate consequence of this result, which is empirically 

appealing, is that there always exists a meeting intensity 

λ ∈ (λ� (·, t − l) , λ� (·, t − l − 1)) , such that we simultane-

ously obtain short-term momentum and long-term rever- 

sal. A second consequence is that the serial correlation of 

returns in Eq. (25) decays with the lag in the momentum 

region, thus generating a downward-sloping term structure 

of momentum. 

To illustrate the different points of Theorem 3.2 , we 

plot in Fig. 2 the serial correlation of returns as a func- 

tion of the meeting intensity for different lags. Without 
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Fig. 2. Information percolation and serial correlation in Returns. Serial correlation of returns as a function of the meeting intensity λ. Serial correlation is 

computed at t = 4 for two different lags: the solid line corresponds to lag l = 1 , and the dashed line to lag l = 2 . The calibration used is H = S = � = 1 

and τ = 1 / 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

information percolation, returns are unpredictable, consis-

tent with the last point of Theorem 3.2 . With informa-

tion percolation, stock returns exhibit reversals when the

meeting intensity is below the threshold λ� defined in

Theorem 3.2 . As information percolation intensifies and the

meeting intensity rises above the threshold λ� , stock re-

turns become positively autocorrelated. Furthermore, the

momentum thresholds increase with the lag (the second

point of Theorem 3.2 ), while the magnitude of momentum

decays with the lag. Finally, for large values of the meet-

ing intensity, returns become serially uncorrelated (the last

part of Theorem 3.2 ). Importantly, Fig. 2 shows that mo-

mentum is hump-shaped in the meeting intensity. To see

this, pick the momentum threshold as the meeting inten-

sity, λ = λ� (·, t − l) . At this point, the reversal effect asso-

ciated with current supply shocks exactly offsets the mo-

mentum effect associated with the revision of past sup-

ply shocks. An increase in the meeting intensity beyond

this threshold weakens the reversal effect and strengthens

the momentum effect, thereby creating an increasing re-

lation between momentum and the meeting intensity. As

the meeting intensity becomes infinite, not only does the

reversal effect die out, but the momentum effect also dis-

appears. As a result, the relation between momentum and

the meeting intensity becomes decreasing as the meeting

intensity increases, resulting in a hump-shaped pattern. 

3.3. Model predictions and empirical evidence 

Our model predicts a hump-shaped relation between

momentum and the meeting intensity, as apparent from

Fig. 2 . This prediction is consistent with Hong, Lim and

Stein (20 0 0) , who test the momentum theory of Hong

and Stein (1999) . Both our theory and that of Hong and

Stein (1999) centrally rely on the speed at which informa-

tion diffuses in the market, which ( Hong, Lim and Stein,

20 0 0 ) proxy using firm size. Specifically, Hong, Lim and

Stein (20 0 0) document a hump-shaped pattern between

firm size and the profitability of momentum. 16 While

Hong and Stein (1999) rationalize the decreasing part of
16 Note that the empirical study of Hong, Lim and Stein (20 0 0) is related 

to cross-sectional momentum, whereas both Hong and Stein (1999) and 

our theoretical study relate to time-series momentum. These two forms 

of momentum are strongly related but not identical. See Moskowitz, Ooi 

and Pedersen (2012) for a discussion. 

 

 

this relation, our model further explains reversals for small

firms through liquidity shocks (see also French and Roll,

1986 ). 

Lehmann (1990) and Jegadeesh (1990) find that stock

returns exhibit strong reversals at frequencies less than

a month. In our model, the amount of information that

agents accumulate depends on the time elapsed between

trading rounds—the longer the time within trading rounds

is, the more information agents accumulate through ran-

dom meetings. Consequently, fixing the meeting inten-

sity, our model predicts that the sign of serial correlation

varies for different trading frequencies. While the informa-

tion percolation mechanism generates momentum at lower

trading frequencies, agents have little time to talk between

trading rounds at high trading frequencies and short-term

reversal therefore prevails. 

An additional empirical finding is that the magnitude

of momentum is large for short lookback periods (one to

six months) and decays as the lookback period increases,

with weaker evidence of reversal for periods longer than

12 months ( Moskowitz, Ooi and Pedersen, 2012 ). 17 Infor-

mation percolation bears similar time-series implications.

To see this, note that the specification of Proposition 5 can

also be written for different lookback periods: 

E 

[˜ P t+1 − ˜ P t 
∣∣F 

r 
t 

]
= 

t ∑ 

l=1 

K t+1 − K t 

K t+1 K 

c 
t 

m 

′ 
t−l 

(˜ P t − ˜ P t−l 

)
−K t+1 − K t 

K t+1 K 

c 
t 

H 

1 + τ 2 �S�0 ̃

 P 0 , (32)

and 

m 

′ 
t−l ≡ K t−l 

(
1 

1 + τ 2 S�t−l �
− 1 

1 + τ 2 S�t−l+1 �

)
− H 

1 + τ 2 �S�0 

. (33)

Eq. (32) indicates that momentum also arises for larger

lookback windows. Since the second term in (32) is neg-

ative, Eq. (33) suggests a decaying “term-structure” of mo-

mentum, whereby returns exhibit momentum for short
17 Moskowitz, Ooi and Pedersen (2012) find that this decaying pattern 

differs across asset classes. The pattern is decaying for commodities, eq- 

uities, and currencies and U-shaped for other asset classes. 
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Fig. 3. Term structure of momentum. The figure depicts the serial corre- 

lation of returns when the lookback period varies from one to 12 months, 

as in (32) and (33) . There are two sets of bars, one corresponding to λ = 

0 . 05 and the second to λ = 0 . 35 . The calibration used is H = S = � = 1 , 

and τ = 1 / 3 . 

 

19 
lookback periods and reversal over longer lookback peri- 

ods. To illustrate this decaying pattern of momentum, we 

plot the serial correlation in Eqs. (32) and (33) as a func- 

tion of the lookback window in Fig. 3 . For low values 

of the meeting intensity, returns exhibit reversals at all 

horizons (the solid bars). In contrast, information percola- 

tion at a higher intensity generates short-run momentum 

and long-run reversals (the dashed bars), consistent with 

Moskowitz, Ooi and Pedersen (2012) . 18 

Novy-Marx (2012) proposes an alternative measure of 

momentum, which includes past returns at both recent 

and intermediate horizons. This way of measuring momen- 

tum is similar to our momentum measure in Proposition 5 , 

which includes all past returns. In the context of our 

model, ignoring lags leads to an omitted-variables bias, 

which can potentially result in overestimating the magni- 

tude of time-series momentum, a matter on which we now 

elaborate. 

3.4. Standard definition of momentum 

Our measure of momentum in Proposition 5 uses all 

past returns to obtain a complete description of momen- 

tum. Except for Novy-Marx (2012) , including more than 

one lag is not a standard way of measuring momentum 

empirically. To be consistent with a large body of empir- 

ical literature, we compute the regression coefficient in 

Proposition 5 when the right-hand side includes only the 

most recent past return. 

Proposition 6 . Under the standard definition of momentum, 

expected future returns satisfy 

E 

[˜ P t+1 − ˜ P t 
∣∣˜ P t − ˜ P t−1 

]
= 

K t+1 − K t 

K t+1 K 

c 
t 

( m t−1 + b t−1 ) 
(˜ P t − ˜ P t−1 

)
,

(34) 

where b t−1 ≥ 0 is a positive bias, which arises through the 

omission of past returns: 
18 We do not attempt to match the magnitude of momentum, nor the 

exact length of the decaying pattern. Our purpose is to highlight a theo- 

retical mechanism that can generate such pattern. Empirical work is yet 

needed to estimate plausible values of λ and other parameters to better 

match the data. 
b t−1 = 

K t − K t−1 

K t K 

c 
t−1 

Var [ 
∑ t 

l=1 m t−1 −l ( ̃  P t−l − ˜ P t−1 −l )] 

Var [ ̃  P t − ˜ P t−1 ] 
. (35) 

In our setup, omitting past realized returns creates a 

positive bias in the estimate of the coefficient of serial cor- 

relation. To illustrate the magnitude of this bias, we plot in 

the left panel of Fig. 4 the serial correlation of returns as 

a function of the meeting intensity, including or excluding 

past realized returns. The left panel shows that the bias in- 

troduced by the standard measure is non-monotonic in the 

meeting intensity. For large or small values of the meet- 

ing intensity, both our measure and the standard measure 

coincide. For intermediate values of the meeting intensity, 

however, the bias can be substantial, suggesting that our 

measure provides a conservative estimate of momentum 

relative to the standard measure. 

The size of the estimation bias decreases with the 

length of the lookback period considered. In particular, 

the right panel of Fig. 4 depicts momentum for lookback 

periods of different lengths ( Moskowitz, Ooi and Peder- 

sen, 2012 ), while keeping the meeting intensity constant. 

Excluding past realized returns (dashed bars) produces a 

strong positive bias at short horizons (relative to including 

all realized returns). 19 

In general, Proposition 6 and Fig. 4 demonstrate that 

including all past returns produces a lower estimate of 

momentum relative to standard measures, a result that 

strengthens the conclusions of the previous section. More- 

over, the relation between momentum and the meeting in- 

tensity remains robust to the inclusion or the exclusion of 

past returns. Finally, the bias arising from the exclusion of 

past returns prevails independently of the pattern of in- 

formation arrival that we propose in this paper—omitting 

lagged returns always results in overestimating momentum 

in a rational-expectations model. 

Empirically, however, the difference between the two 

measures in Propositions 5 and 6 does not necessarily con- 

stitute an estimation bias. Rather, this difference is a mat- 

ter of how one defines momentum empirically. In that 

respect, the existence of a bias in our model suggests a 

possible way of validating the model empirically by com- 

paring the two definitions; it also provides an alternative 

approach to rationalize the term structure of momentum 

documented in Novy-Marx (2012) . 

4. Trading strategies 

In this section we analyze investors’ trading strategies. 

We first decompose investors’ demand into two compo- 

nents, a short-term and long-term component. We show 

that information percolation induces investors to trade 

on short-term price moves, as opposed to long-term fun- 

damentals. We then show that information percolation 
While the right panel of Fig. 4 shows that returns exhibit momentum 

over the range of lookback periods considered, extending the lookback 

period beyond 12 months shows that they eventually exhibit long-term 

reversal, consistent with a vast majority of empirical literature. Hence, for 

certain values of λ, there exists a threshold of the lookback period beyond 

which the sign of the serial correlation changes from positive to negative. 

Comparative statics about this threshold open the possibility of additional 

tests of the model. We thank a referee for this suggestion. 
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Fig. 4. Two ways of measuring momentum. The left panel depicts the serial correlation of returns at time t = 4 as a function of the meeting intensity λ. 

The solid line corresponds to our definition of momentum ( Proposition 5 ), and the dashed line to the standard definition of momentum without additional 

lags ( Proposition 6 ). The right panel depicts the serial correlation of returns for different lookback periods, as in Moskowitz, Ooi and Pedersen (2012) , when 

λ = 0 . 35 . The solid bars include all lags, whereas the dashed bars exclude any additional lags. The calibration used is H = S = � = 1 and τ = 1 / 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 The cross-sectional average of investors’ precision for the next period, 

K t+1 , is known at time t , because it is just a function of time. In other 

words, investors know today how precise they will be on average next 

period, although they do not know what their individual precision will be 

next period. 
generates heterogeneity in precision, which induces bet-

ter informed investors to front run those lesser informed.

Specifically, better informed investors act as “profit tak-

ers,” while lesser informed investors follow the public

opinion. As a result, better informed investors system-

atically trade against the serial correlation of returns:

when returns exhibit momentum, better informed in-

vestors are contrarians, while lesser informed investors are

momentum traders. In contrast, with homogeneous pre-

cisions, all agents are market neutral in the eyes of the

econometrician. 

By trading at the expense of momentum traders, con-

trarians optimally allow momentum to persist, despite the

existence of momentum traders. This result is key to our

theory of momentum: while an exogenous increase in av-

erage market precision is sufficient to generate momentum

( Holden and Subrahmanyam, 2002 ), investors do not trade

on it if they have homogeneous precisions. However, what

makes momentum a puzzle is that it persists, despite the

presence of momentum traders. Our model offers a poten-

tial answer to this puzzle based on heterogeneity in in-

dividual precisions—momentum survives in the presence

of momentum traders because better informed investors

trade against it. 

4.1. Predictability of trading strategies 

We start by decomposing investors’ trading strategies in

(16) into two components. 

Proposition 7 . At date t, agent i’s optimal demand is given

by 

˜ D 

i 
t = 

τK 

i 
t 

K t 

⎛ ⎜ ⎜ ⎝ 

K 

2 
t 

K t+1 

(
E [ ̃  U |F 

i 
t ] − ˜ P t 

)︸ ︷︷ ︸ 
Long-term 

position 

+ K t 

(
E [ ̃  P t+1 |F 

i 
t ] − ˜ P t 

)︸ ︷︷ ︸ 
Short-term 

position 

⎞ ⎟ ⎟ ⎠ 

. 

(36)

Agent i ’s optimal demand is the product of two terms.

The first term, τK 

i 
t /K t , shows that each agent i compares

the precision of her own information with the average

market precision and trades more aggressively when her

precision is higher. The second term (in brackets) has the
same structure for all agents and consists of two compo-

nents (see also Banerjee, Kaniel and Kremer, 2009 for a

similar decomposition): 

1. A long-term position , reflecting the agent’s view about

the long-term payoff. 

2. A short-term position , reflecting the agent’s view about

short-term price moves. 

When average market precision remains constant

over time (i.e., K t+1 = K t ), prices are martingales (see

Proposition 2 ) and agents’ short-term position drops out

of (36) : because the price tomorrow does not contain

more information than the price today, agents focus on

their long-term view of the fundamental. With informa-

tion percolation, in contrast, the price tomorrow incor-

porates increasingly precise information about the funda-

mental, causing investors’ short-term position to dominate

their demand (in the extreme case whereby agents col-

lect an infinite amount of information between t and t + 1 ,

their optimal demand at time t becomes myopic and con-

sists of their short-term position exclusively). Hence, the

decomposition in (36) shows that information percolation,

by generating an increase in average market precision, in-

duces investors to optimally adopt trading strategies based

on short-term views. This short-term trading activity arises

as investors anticipate an increase in average market preci-

sion next period, K t+1 , which they can perfectly predict. 20 

We now analyze how investors expect to trade in the

future. To do so, we first establish in Proposition 8 a key

relationship necessary to understand investors’ trading be-

havior. 

Proposition 8 . The portfolio of any agent i in the economy,

rescaled by the inverse of her relative precision, K t /K 

i 
t , is a

martingale: 

E 

[
K t+1 

K 

i 
t+1 ̃

 D 

i 
t+1 

∣∣∣∣F 

i 
t 

]
= 

K t 

K 

i 
t ̃

 D 

i 
t . (37)
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Proposition 8 has two important implications, which we 

present as corollaries. First, an agent whose current pre- 

cision coincides with average market precision, K t , cannot 

predict how she will trade next period. 

Corollary 1 . If K 

i 
t = K t then 

E 

[˜ D 

i 
t+1 − ˜ D 

i 
t 

∣∣F 

i 
t 

]
= 0 . (38) 

As a consequence, the average agent is neutral to the 

market: she is neither a momentum trader nor a con- 

trarian. 21 This agent therefore serves as a useful bench- 

mark when analyzing the heterogeneity of trading strate- 

gies generated by information percolation. 

Second, the expected trading strategy of any agent i 

conditioned on the common information set, F 

c , can be 

written as follows. 

Corollary 2 . The trading strategy of agent i, as measured by 

the econometrician, satisfies 

E 

[˜ D 

i 
t+1 − ˜ D 

i 
t 

∣∣F 

c 
t 

]
= τ

(K t − K 

i 
t )(K t+1 − K t ) 

K t+1 

(
E [ ̃  U |F 

c 
t ] − ˜ P t 

)
. 

(39) 

From now on we adopt the point of view of the econo- 

metrician and describe agents’ trading strategies with re- 

spect to the common information set F 

c 
t , under which 

strategies are comparable directly. The econometrician can 

predict how agent i trades only if average market preci- 

sion improves over time and if agent i ’s precision differs 

from the average market precision. In particular, better in- 

formed agents ( K 

i 
t > K t ) trade against the “public opinion,”

as measured by the term (E [ ̃  U |F 

c 
t ] − ˜ P t ) , whereas less in- 

formed agents follow the public opinion. We draw two 

conclusions from this observation. First, a model in which 

all agents have the same precision does not produce pre- 

dictable trading—even though an exogenous increase in 

precision can generate momentum ( Theorem 3.1 ), no one 

would trade on it. Second, heterogeneous precisions create 

an additional layer of trading activity, whereby informed 

agents not only trade against noise traders, but also trade 

against less informed traders. 

That better informed agents trade against lesser in- 

formed agents can be interpreted as a competitive form of 

“front running.” To illustrate this, suppose that the public 

opinion today is that the stock is undervalued, E [ ̃  U |F 

c 
t ] > ˜ P t . All agents then buy the stock today—the better in- 

formed they are, the more aggressively they buy. 22 Eq. (39) 

in turn indicates that lesser informed investors expect 

to further increase their position tomorrow, thus follow- 

ing the public opinion (their trades tomorrow are posi- 

tively correlated with the public opinion today). In con- 

trast, while better informed investors build a large position 

today, they expect to partly unwind it tomorrow at the ex- 

pense of the lesser informed agents, thus acting as “profit 

takers.” We emphasize, however, that this “front-running”
21 One can see this by applying the law of iterated expectations on 

(38) and conditioning on the last period price move, ˜ P t − ˜ P t−1 . This di- 

rectly implies that cov ( ̃  D i t+1 − ˜ D i t , ̃
 P t − ˜ P t−1 ) = 0 . 

22 To see this, notice that ˜ D i t = τK i t (E [ ̃
 U |F i t ] − ˜ P t ) . Thus, E [ ̃  D i t |F c t ] = 

τK i t (E [ ̃
 U |F c t ] − ˜ P t ) , and therefore if E [ ̃  U |F c t ] − ˜ P t > 0 , investors buy the 

stock today. 
behavior is not strategic, since investors, who belong to a 

continuum, do not have price impact in our model. 

4.2. Information percolation and momentum trading 

To identify trend-following and contrarian strategies, 

we follow the convention introduced by Brennan and Cao 

(1997) . This approach is consistent with the convention 

we adopted to measure momentum: we condition fu- 

ture trading strategies on the information set contain- 

ing past returns, F 

r 
t . We provide this trading measure in 

Proposition 9 . 

Proposition 9 . Conditional on past returns, the expected trad- 

ing strategy of investor i from time t to t + 1 satisfies 

E 

[˜ D 

i 
t+1 − ˜ D 

i 
t |F 

r 
t 

]
= 

t+1 ∑ 

l=1 

τ (K t − K 

i 
t ) 

K t+1 − K t 

K t+1 K 

c 
t 

m t−l ︸ ︷︷ ︸ 
Momentum trading coefficient 

( ̃  P t−l+1 − ˜ P t−l ) , (40) 

where the coefficients m t−l are defined in Proposition 5 . 

Investors’ trading behavior is tightly related to the se- 

rial correlation of returns: Eq. (40) shows that the trading 

coefficient of an investor i is the serial correlation of re- 

turns multiplied by a factor τ (K t − K 

i 
t ) , measuring how in- 

vestor i ’s precision compares to average market precision. 

As a result, better informed investors trade systematically 

against the serial correlation of returns: when returns ex- 

hibit reversals they are momentum traders and when re- 

turns exhibit momentum they are contrarians. The oppo- 

site mechanism applies for lesser informed investors. This 

trading behavior is consistent with the front-running pat- 

tern we previously discussed: better informed agents spec- 

ulate against the public opinion and front run the trades 

of the lesser informed agents, who, they expect, trade on 

momentum. 

To illustrate these points, we plot in Fig. 5 the “trading 

coefficient” at lag l = 1 , as a function of the meeting inten- 

sity and for two investor types: ( i ) the 5% percentile least 

informed investor (solid line) and ( ii ) the 95% percentile 

best informed investor (dashed line). The area between the 

lines therefore captures 90% of the investor population. In 

the absence of information percolation, all investors are 

neutral. Because they have information with identical pre- 

cision, they are neither momentum traders nor contrari- 

ans. For positive values of the meeting intensity, optimal 

trading strategies differ. Better informed investors are mo- 

mentum traders in the reversal region and contrarians in 

the momentum region, whereas the opposite holds for the 

lesser informed investors. Finally, the spectrum of trad- 

ing strategies expands as the magnitude of momentum in- 

creases and contracts as the magnitude of momentum de- 

creases. At the threshold λ∗, prices are martingales and 

therefore investors do not trade based on past prices. 23 
23 Because the momentum trading coefficient is just the serial correla- 

tion of returns rescaled by an agent’s relative precision and risk tolerance, 

the analysis of Section 3.4 also applies to trading strategies: condition- 

ing only on the most recent lagged return (as opposed to all past re- 
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Fig. 5. Information percolation and momentum trading. Momentum trading coefficient from Eq. (40) as a function of the meeting intensity λ. A positive 

coefficient means momentum trading, whereas a negative coefficient means contrarian trading. The solid line corresponds to the 5% percentile less informed 

investor, and the dashed line to the 95% percentile better informed investor. Thus, the area between the two lines represents 90% of the investor population. 

The coefficient is represented at time t = 4 with one lag, l = 1 . The calibration used is H = S = � = 1 and τ = 1 / 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These trading patterns are consistent with empirical ev-

idence. A recent empirical study by Grinblatt, Jostova, Pe-

trasek and Philipov (2016) finds that most hedge funds

are contrarians, whereas most mutual funds tend to fol-

low momentum strategies. Furthermore, contrarian hedge

funds make profits on mutual funds by buying stocks that

mutual funds sell. While hedge funds outperform mu-

tual funds on average, mutual funds consistently profit

from momentum trading ( Grinblatt, Titman and Wermers,

1995 ). Another strand of the literature documents that in-

vestors who have a broader experience on how the market

operates—specialists and commercial investors—are con-

trarians and liquidity providers ( Hendershott, Seasholes,

2007 ; Moskowitz, Ooi and Pedersen, 2012 ). In contrast,

mutual fund flows chase past performance and further

exacerbate market anomalies ( Akbas, Armstrong, Sorescu

and Subrahmanyam, 2015; Lou, 2012 ). Kelley and Tetlock

(2013) observe that informed retail trades predict returns,

all the more so in markets with higher investor hetero-

geneity, consistent with our idea that heterogeneity is a

key element in understanding return predictability. Finally,

Baltzer, Jank and Smajlbegovic (2015) show that foreign

investors trade on momentum, while domestic investors,

who presumably possess more information about domestic

stocks, are contrarians. While this evidence can be used to

distinguish empirically our theory from Albuquerque and

Miao (2014) , who predict different trading patterns, further

research is needed to distinguish our theory from theirs. 

Overall, our model provides an explanation to the

puzzling observation that time-series momentum persists,

even though investors trade on it ( Moskowitz, Ooi and

Pedersen, 2012 ). In our setup, better informed individu-

als trade systematically against the serial correlation of re-

turns, front running the lesser informed agents. Conversely,

the main force that could eliminate momentum—the lesser

informed investors—is also the weakest one. A potential

caveat is that an unconstrained, risk-neutral arbitrageur

could enter the market and conceivably eliminate momen-

tum. We consider this possibility in Appendix C.4 and
turns) leads to a positively biased estimator for the momentum trading 

coefficient. The econometrician may therefore overestimate the magni- 

tude of momentum trading by market participants. 

˜
 

show that this arbitrageur must necessarily impact prices

to eliminate momentum. Since her trades move prices

adversely, she faces a tradeoff between trading aggres-

sively on momentum and moderating her price impact.

Hence, she optimally decides not to eliminate momentum

completely. 

5. Extensions 

In this section, we extend our model along two di-

mensions. First, we extend the model to a stationary

equilibrium—a setup in which the asset pays an infinite

stream of dividends instead of a single liquidating divi-

dend. In this setup, we demonstrate that information per-

colation generates and amplifies momentum, thus gener-

alizing our previous results. Second, we incorporate a “ru-

mor” in our benchmark model and show that it can gen-

erate a phase of price over-shooting followed by a phase

of price correction. Under certain conditions, this conver-

gence pattern can jointly produce short-term momentum

and long-term reversal. 

5.1. Dynamic setup 

We present a simplified version of the stationary model

and relegate all technical details to Appendix D.1 . Consider

an economy that goes on forever and in which the stock

pays a stochastic dividend D t per share. As in the finite-

horizon version of the model, new liquidity traders enter

the market in every trading session. For simplicity, we as-

sume that the dividend process D t and the supply process

X t follow random walks (we solve a general version of the

model with AR(1) processes in Appendix D.1 ): 

D t = D t−1 + ε d t (41)

X t = X t−1 + ε x t . (42)

All investors observe the past and current realizations

of dividends and stock prices. Each investor observes a sig-

nal about the dividend innovation 3-steps ahead: 24 

 z i t = ε d t+3 + ̃

 ε i 
t . (43)
24 Note that the model can be extended to a general case in which in- 

vestors receive information about the dividend T -steps ahead at the ex- 
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Fig. 6. Dynamic model: price coefficients and serial correlation of returns. The upper panels plot the term structure of the coefficients a and b of the 

equilibrium price (44) , without information percolation ( λ = 0 , solid lines) or with information percolation ( λ = 1 , dashed lines). The lower panel depicts 

the serial correlation of returns, corr (P t+1 − P t , P t+2 − P t+1 ) , for different levels of the meeting intensity λ. There are two cases: ( i ) the dividend and supply 

processes are random walks (solid line) and ( ii ) the dividend and supply processes are mean-reverting with AR(1) parameter 0.9 (dashed line). The cal- 

ibration for the rest of the parameters ensures the existence of an equilibrium in the stationary model: R = 1 . 1 , H = 1 , S = 10 , � = 1 / 100 , and τ = 1 / 3 , 

although most of the calibrations we have tried yield the same qualitative results. 
As in the baseline model, investors meet and share 

private information over time. A fundamental difference, 

however, is that investors do not only talk about a sin- 

gle liquidation value, but about several dividends revealed 

at different times in the future—they share information 

about the dividend 3-steps ahead, 2-steps ahead, and 1- 

step ahead. 

Unlike the baseline model, we consider an overlapping 

generation of agents, as in Bacchetta and Wincoop (2006) , 

Watanabe (2008) , Banerjee (2011) , and Andrei (2013) . This 

assumption considerably simplifies the analysis by ruling 

out dynamic hedging demands and does not change the 

results qualitatively. 25 The solution method, which follows 

Andrei (2013) , proceeds by specifying an equilibrium price 

that is a linear function of model innovations: 

P t = αD t + βX t−3 + (a 3 a 2 a 1 ) ε
d 
t + (b 3 b 2 b 1 ) ε

x 
t , (44) 

where εd 
t ≡ (ε d 

t+1 
ε d 

t+2 
ε d 

t+3 
)  are the three unobservable 

dividend innovations occurring in the future and εx 
t ≡

(ε x 
t−2 

ε x 
t−1 

ε x t ) 
 are the last three supply innovations. In 

general, the coefficients a are positive, whereas the co- 

efficients b are negative. The main difference with re- 

spect to our baseline model is that equilibrium prices are 

now stationary: the coefficients α, β , a , and b in (44) do 

not change over time, in contrast to the price coefficients 

in Theorem 2.1 . These coefficients, however, have a term 

structure capturing the price effect of the next three divi- 

dend shocks and the last three supply shocks. 

Information percolation significantly affects the term 

structure of the price coefficients. Because investors 
pense of analytical complexity and without altering the main intuition 

presented here. 
25 In the infinite-horizon case the portfolio maximization problem is 

substantially more complicated. The fixed-point problem cannot be re- 

duced to a finite dimensional one, but Bacchetta and Wincoop (2006) and 

Andrei (2013) show how to approximate the problem to a desired accu- 

racy level by truncating the state space. The (numerical) results for the 

infinite-horizon model are very close to those obtained in the overlap- 

ping generations model. See also Albuquerque and Miao (2014) . 
dynamically talk about the next three dividends, they 

spend more time talking about the dividend one step 

ahead, as compared to dividends occurring two or three 

periods ahead. As a result, they have more information re- 

garding the dividend one step ahead. It follows that in- 

formation percolation causes the coefficient a 3 to increase 

faster than the coefficient a 2 , which itself increases faster 

than the coefficient a 1 . The upper left panel of Fig. 6 illus- 

trates the term structure of coefficients a for λ = 0 (solid 

line) and λ = 1 (dashed line). Clearly, information perco- 

lation “steepens” the term structure of coefficients and 

magnifies the differences between them. The upper right 

panel of Fig. 6 shows that a similar term structure pre- 

vails for supply coefficients. In particular, information per- 

colation exacerbates the effect of current supply shocks 

(the coefficient b 1 becomes larger in absolute terms), rela- 

tive to past supply shocks (as measured by the coefficients 

b 2 and b 3 ). Overall, the percolation mechanism steepens 

the term structure of price coefficients. The term struc- 

ture of price coefficients is the main determinant of the 

sign of the serial correlation of returns. To see this, con- 

sider two consecutive price changes, P t − P t−1 and P t+1 − P t . 

Each price change depends differently on future dividend 

shocks and past supply innovations. Table 1 decomposes 

the dependence of price changes on each shock. Comput- 

ing the covariance between P t − P t−1 and P t+1 − P t in turn 

involves multiplying the differences between consecutive 

coefficients a and consecutive coefficients b , as given in 

each column of Table 1 . 26 The term structure of price co- 

efficients precisely dictates the magnitude of these differ- 

ences, which information percolation amplifies. 
26 To be consistent with our main model, we compute the serial correla- 

tion of returns using ex-dividend prices. Alternatively, one could assume 

several trading rounds in-between dividend payment dates (which would 

bring this extension even closer to our baseline case), with similar results. 

See Makarov and Rytchkov (2012) for a detailed analysis when returns are 

computed using cum-dividend prices. 
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Table 1 

Two consecutive price differences in the dynamic model. 

Price Dividend innovations Supply innovations 

differences ε d t ε d t+1 ε d t+2 ε d t+3 ε d t+4 ε x t−3 ε x t−2 ε x t−1 ε x t ε x t+1 

P t − P t−1 α − a 3 a 3 − a 2 a 2 − a 1 a 1 0 β − b 3 b 3 − b 2 b 2 − b 1 b 1 0 

P t+1 − P t 0 α − a 3 a 3 − a 2 a 2 − a 1 a 1 0 β − b 3 b 3 − b 2 b 2 − b 1 b 1 
Re v ersal ︸ ︷︷ ︸ 
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Importantly, the current supply shock ε x t is the only col-

umn of Table 1 that creates reversal, as in our benchmark

model; other shocks generate momentum. While informa-

tion percolation amplifies the price effect of all shocks—it

steepens the term structure of price coefficients—it causes

the momentum effect to dominate the reversal effect be-

yond a certain threshold of the meeting intensity. In the

case of the random walk specification in (41) and (42) ,

stock returns are serially uncorrelated when investors do

not receive private information. Hence, any flow of private

information creates momentum, which information perco-

lation simply amplifies, as apparent from the solid line in

the lower panel of Fig. 6 . In contrast, when the dividend

and the supply follow mean-reverting processes, returns

exhibit reversals without information percolation. In this

case, information percolation not only amplifies momen-

tum but allows momentum to arise in the first place, as in

our benchmark model. For instance, the dashed line in the

lower panel of Fig. 6 shows that information percolation

creates momentum when the dividend and supply have a

reversion parameter of 0.9. 

5.2. Rumors 

Our baseline model can jointly generate short-term

momentum, consistent with the empirical finding of

Jegadeesh and Titman (1993) , and long-term reversal, con-

sistent with the over-reaction phenomenon of De Bondt

and Thaler (1985) . However, an important question is

whether these effects can be amplified by rumors. It is

natural to think of social interactions as propagators of ru-

mors. 27 We introduce a rumor in our model by assuming

that agents receive at time t = 0 signals of the form: 

 z i 0 = ̃

 U + ̃

 V + ̃

 ε i 
0 (45)

where ̃  V is normally distributed with zero mean and preci-

sion ν . We build a simplified version of the model in which

we assume that the asset is liquidated at time T = 4 . 

The common noise ˜ V satisfies two important properties

of a rumor: (i) it circulates from person to person and (ii)

it is unverifiable. The first property arises as private signals

now contain the variable ̃  V , which now circulates from one

agent to another through word-of-mouth communication.

The second property results from the signal specification

in (45) : on average, private signals only reveal the sum of

the fundamental value and the rumor ( ̃  U + ̃

 V ). As a result,
27 Peterson and Gist (1951) define a rumor as “an unverified account or 

explanation of events circulating from person to person and pertaining to an 

object, event, or issue in public concern. ”

 

the rumor is unverifiable as agents cannot distinguish fun-

damental information from the rumor, either using prices

or their private signals. 

After receiving the initial signal at time t = 0 , agents

meet with each other exactly as in the baseline setup.

When they meet, they exchange the information they have,

which includes the rumor ˜ V . Agents are aware of the ex-

istence of the rumor, but cannot disentangle it from fun-

damental information because the signals they exchange

through private meetings all contain the rumor. To allow

agents to eventually learn about the rumor, we assume

that agents receive an additional signal at t = 3 , as the

economy approaches the final liquidation date. This infor-

mation is now centered on the fundamental: 

 Z i 3 = ̃

 U + ̃

 ε i 
3 . (46)

Although this signal does not allow an agent to perfectly

back out the content of rumor, it allows prices to become

more informative about the fundamental. The reason is

that the private signal in (46) is centered on 

˜ U . This as-

sumption incorporates the idea that rumors do not last for-

ever, but eventually subside. 

In the presence of a rumor, asset prices and in-

vestors’ asset demands do not have a closed-form solution.

Theorem 5.1 describes a system of recursive equations for

the equilibrium price coefficients. We provide the proof of

Theorem 5.1 and we solve this system of equations through

a numerical scheme that we describe in Appendix D.2 . 

Theorem 5.1 . In the presence of a rumor, equilibrium prices

have the following form 

˜ P t = 

t−1 ∑ 

j=0 

ξ j,t ̃
 Q j + βt 

[˜ U − 1 

τS�′ 
t 

(˜ X t − �t ̃
 V 

)]
︸ ︷︷ ︸ ˜ Q t 

, (47)

where { ̃  Q j } t j=0 
are the normalized price signals, which can be

written as 

˜ Q j ≡ ˜ U − 1 

τS�′ 
j 

(˜ X j − � j ̃
 V 

)
. (48)

The coefficients { �′ 
j 
} t 

j=0 
and { � j } t j=0 

are positive and solve

a fixed-point problem given by a system of recursive equa-

tions: 

�′ 
t = 

1 

τS 

t ∑ 

j=0 

θ̄ j −
t−1 ∑ 

j=0 

�′ 
j 

�t = 

t ∑ 

j=0 

θ̄ j −
t−1 ∑ 

j=0 

� j , 

(49)
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Fig. 7. Coefficients { �′ 
j 
} t 

j=0 
from Theorem 5.1 with a rumor. The figure 

depicts the coefficients { �′ 
j 
} t 

j=0 
over time in the presence of a rumor with 

precision ν = 3 . Each line corresponds to a meeting intensity of λ = 1 , 

λ = 2 , and λ = 3 . The calibration used is H = S = � = 1 and τ = 1 / 3 . 

 

in which θ̄ denotes the average coefficients of agents’ private 

signals in their optimal demand. 

The normalized price signals in (48) contain a rumor. 

The price signal now reflects fundamental information 

˜ U , 

supply shocks ˜ X , and the rumor ˜ V . When signals do not 

contain a rumor, we recover the result of Theorem 2.1 , in 

which the coefficients �′ 
j 
= � j , for j = 0 , 1 , . . . , 3 , repre-

sent the average number of incremental signals and in- 

crease exponentially over time. In contrast, when signals 

contain a rumor, the coefficients �′ 
j 

increase initially but 

then revert back to zero, as we show in Fig. 7 . Intuitively, 

agents know they possess information of lower quality due 

to the presence of the rumor and therefore apply a dis- 

count on the actual number of signals they have—the co- 

efficients �′ 
j 

now represent discounted averages of incre- 
Fig. 8. Serial correlation of return and rumors. Serial correlation of stock returns

line) as a function of the meeting intensity. The first period serial correlation is d

the second period serial correlation is defined as ˜ P 2 − ˜ P 1 and ˜ P 3 − ˜ P 2 . Each pane

H = S = � = 1 and τ = 1 / 3 . 
mental signals. At time t = 2 , the discounted average �′ 
declines, as agents anticipate that they will get better in- 

formation at time t = 3 and apply a stronger discount on 

their number of signals. At time t = 3 , the discounted aver- 

age number of signals almost reaches zero for λ = 3 . When 

agents have collected a large number of signals, they can 

accurately forecast ˜ U + ̃

 V . Hence, when they get the sig- 

nal centered on the fundamental, they ignore their other 

signals. The rumor thus induces agents to interpret their 

information with caution. 

We now investigate how this convergence pattern re- 

lates to the serial correlation of stock returns. Intuitively, 

the first phase of price “over-shooting” generates short- 

term momentum and the second phase of price correc- 

tion generates long-term reversal. To show this, we plot 

the serial correlation of returns in Fig. 8 . When the ru- 

mor is fairly precise (Panel a), returns mostly exhibit mo- 

mentum: despite the presence of the rumor, agents’ preci- 

sion rises over time, generating momentum. As the pre- 

cision of the rumor decreases (Panel b), agents discount 

their actual number of signals more strongly. As a result, 

agents progressively cut back their positions—they adjust 

their trades to reflect that their information is of lower 

quality. While these portfolio adjustments do not prevent 

returns to exhibit momentum in the first period, they in- 

duce reversal in the second period as the price gradually 

corrects. Finally, when the rumor’s precision is low (Panel 

c), agents become cautious about their information and the 

improvement in their precision is not sufficient to generate 

momentum. 

6. Conclusion 

This paper suggests several interesting avenues for fu- 

ture research. For instance, in this paper we abstract from 

individual behavioral biases, but we believe that individual 

biases, such as in Daniel, Hirshleifer and Subrahmanyam 

(1998) or Barberis, Shleifer and Vishny (1998) , would am- 

plify the effects we analyze. Other questions are worth- 

while investigating, such as extending the setup to mul- 

tiple assets, where information percolation could generate 

rich dynamics of the conditional correlation among assets. 
 over the first period (the solid line) and the second period (the dashed 

efined as the regression coefficient between ̃  P 1 − ˜ P 0 and ̃  P 2 − ˜ P 1 , whereas 

l corresponds to a different rumor precision ν . The calibration used is 
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It is also interesting to study precisely the mechanism of

information transmission and find conditions under which

investors find it beneficial to tell the truth ( Stein, 2008 ). 

A legitimate question is what empirical exercise would

validate our model. We believe that natural experiments

capturing an exogenous increase or decrease in the in-

tensity of word-of-mouth communication could make a

worthwhile empirical point. For example, Shiller (20 0 0) re-

lates the increase in the word-of-mouth communication

intensity once the telephone became effective during the

1920s with the steady increase of volatility during the

same period. Alternatively, the Regulation Fair Disclosure,

promulgated by the U.S. Securities and Exchange Commis-

sion in August 20 0 0, forbids firms and their insiders to

provide information to some investors (often large institu-

tional investors). Hence, after August 20 0 0, there should be

less information propagated through the word-of-mouth

communication channel. 

Appendix A 

A1. Proof of Proposition 1 

To obtain the closed-form solution for the distribution

π of incremental signals, we first derive the equation for

its dynamics. 

Lemma A.1 . The probability density function π over the addi-

tional number of signals collected by each agent satisfies 

d 

d t 
πt (n ) = −λπt (n ) + λ(πt ∗ μt )(n ) , π0 = δn =1 . (50)

Proof . We use an argument made in Proposition 3 of

Duffie, Giroux and Manso (2010a ) and Proposition 4.2 in

Duffie, Malamud and Manso (2010b ): the probability den-

sity function π t solves (50) if and only if its Fourier trans-

form 

̂ πt solves 

d 

d t ̂
 πt = −λ̂ πt + λ̂ μt ̂  πt , ̂ π0 = 1 . (51)

This differential equation has a unique solution, which is

given by 

̂ πt = exp 

(
−λ

∫ t 

0 

̂ μs d s − λt 

)
. (52)

Our goal is to show that ̂ πt has the solution in (52) . Denote

by X t i the number of new signals gathered if a meeting oc-

curs at time t i and observe that it is distributed as 

X t i ∼ μ( t i , ·) 
where the distribution μ( t, x ) satisfies the Boltzmann

equation ( Duffie, Malamud and Manso, 2009 ) 

d 

d t 
μt (n ) = −λμt (n ) + λ(μt ∗ μt )(n ) , μ0 = δn =1 . (53)

Furthermore, the number N ( t ) of meetings that took

place between time 0 and t is a Poisson counter with in-

tensity λ; accordingly, the total number Y t of new sig-

nals gathered between time 0 and t is given by 
∑ N ( t ) 

i =1 
X t i .

We now characterize its distribution. First, observe that Y t ,

conditional on the set of times { 0 ≤ t 1 ≤ t 2 ≤ · · · ≤ t N ( t ) ≤
t} at which a meeting occurs (up to time t ) and the to-

tal number of meetings N ( t ) (that is, conditioning on the

whole trajectory A 

N 
t of the Poisson process), is distributed

as 

 t | A 

N 
t ∼

∫ 
R N−1 

μ
(
Y t N − Y t N−1 

, t N 
)
d μ

×
(
Y t N−1 

− Y t N−2 
, t N−1 

)
. . . d μ( Y t 1 − 0 , t 1 ) 

≡
∫ 
R N−1 

μ( X t N , t N ) d μ
(
X t N−1 

, t N−1 

)
. . . d μ( X t 1 , t 1 ) . (54)

The distribution in (54) may be written as 

 t | A 

N 
t ∼ �

N ( t ) 
i =1 

μt i 

where, for any probability measures α1 , . . . , αk , we write

�k 
i =1 

= α1 ∗ α2 ∗ . . . ∗ αk . 

Now, observe that each t i in the sequence of meetings

{ 0 ≤ t 1 ≤ t 2 ≤ · · · ≤ t N ( τ ) ≤ t} conditional on N ( t ) is uni-

formly distributed over t ; accordingly, we have that 

 t | N ( t ) ∼ �
N ( t ) 
i =1 

1 

t 

∫ t 

0 

μt i d t i = 

( 

1 

t N ( t ) 

(∫ t 

0 

μs d s 

)∗N ( t ) 
) 

where ∗n denotes the n -fold convolution. 

Using that N ( t ) is a Poisson( λ) counter, we can write 

 t ∼
∞ ∑ 

k =0 

e −λt ( λt ) 
k 

k ! 

1 

t k 

(∫ t 

0 

μs d s 

)∗k 

, 

and thus 

πt ≡ e −λt 
∞ ∑ 

k =0 

λk 

k ! 

(∫ t 

0 

μs d s 

)∗k 

. (55)

Furthermore, computing the Fourier transform of (55) , us-

ing that the transform of a convolution is the product of

the transforms (e.g., Duffie and Manso, 2007 ), we obtain 

̂ πt ≡ e −λt 
∞ ∑ 

k =0 

λk 

k ! 

(∫ t 

0 

̂ μs d s 

)k 

. (56)

Finally, using the Taylor expansion of e x = 

∑ ∞ 

k =0 
x k 

k ! 
, we can

write 

̂ πt = exp 

(
−λ

∫ t 

0 

̂ μs d s − λt 

)
, (57)

which proves (52) and thus (50) , corresponding to Eq. (3)

in the paper. �

To prove Proposition 1 , write the Boltzmann equation in

(53) of the cross-sectional distribution μt of the number of

total signals at time t as 

d 

dt 
μt (n ) = λ

n −1 ∑ 

k =1 

μt (n − k ) μt (k ) − λμt (n ) . (58)

Since agents are assumed to be initially endowed with

a single signal, the initial distribution of signals is a Dirac

mass at 1, i.e., μ0 (1) = 1 . This initial distribution has the

advantage of leading to a closed-form solution for the

cross-sectional distribution of the total number of signals

at time t ≥ 1 and the average number of total signals at

time t , denoted by �t : 
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μt (n ) = e −nλt 
(
e λt − 1 

)n −1 
(59) 

�t = e λt . (60) 

To obtain the distribution of incremental number of sig- 

nals between time t − 1 and t , notice that the probabil- 

ity of getting n new signals over [ t − 1 , t] is independent 

of an agent’s current type and is thus given by the cross- 

sectional distribution: 

P [ n new signals over [ t − 1 , t] | meeting someone ] 

= μt (n ) . (61) 

Since the probability of meeting no one between time t − 1 

and t is 

P [ meeting no one over [ t − 1 , t] ] = e −λ, (62) 

it follows that the distribution π of incremental signals 

satisfies 

πt (n ) = P [ n new signals over [ t − 1 , t] | meet someone ] 

× ( 1 − P [ meet no one over [ t − 1 , t] ] ) , 

(63) 

and thus 

πt (n ) = μt (n ) 
(
1 −e −λ

)
= e −nλt 

(
e λt −1 

)n −1 (
1 −e −λ

)
, n ≥ 1 . 

(64) 

The average number of incremental signals is then given 

by 

�t = �t − �t−1 = e λ(t−1) (e λ − 1) . (65) 

A2. Proof of Theorem 2.1 (equilibrium) 

We provide the proof for a two-trading session econ- 

omy. Once the equilibrium quantities are written in a re- 

cursive form, as in Brennan and Cao (1997) , or He and 

Wang (1995) , it is straightforward to derive the full recur- 

sive equilibrium solution. The model is solved backwards, 

starting from date 1 and then going back to date 0. First, 

we conjecture that prices in period 0 and period 1 have 

the following form ˜ P 0 = β0 ̃
 U − α0 , 0 ̃

 X 0 (66) 

˜ P 1 = β1 ̃
 U − α1 , 0 ̃

 X 0 − α1 , 1 ̃
 X 1 . (67) 

Consider the normalized price signal in period zero, infor- 

mationally equivalent to ˜ P 0 : ˜ Q 0 ≡ 1 

β0 ̃

 P 0 = ̃

 U − α0 , 0 

β0 

˜ X 0 . (68) 

Replace ˜ X 0 from (68) into (67) to obtain ˜ P 1 = ϕ 1 ̃
 U + ξ1 ̃

 Q 0 − α1 , 1 ̃
 X 1 , (69) 

where ϕ 1 ≡ β1 − α1 , 0 
β0 
α0 , 0 

and ξ1 ≡ α1 , 0 
β0 
α0 , 0 

. These coeffi- 

cients are to be determined in equilibrium. We normalize 

the price signal in period t = 1 and obtain 

˜ Q 1 : ˜ Q 1 ≡ 1 

ϕ 1 

(˜ P 1 − ξ1 ̃
 Q 0 

)
= ̃

 U − α1 , 1 

ϕ 1 

˜ X 1 . (70) 

Thus, observing { ̃  Q 0 , ̃
 Q 1 } is equivalent to observing { ̃  P 0 , ̃

 P 1 } . 
We conjecture the following relationships (see Admati, 

1985 ), which are to be verified once the solution is ob- 

tained: 
α0 , 0 

β0 

= 

1 

τS�0 

(71) 

α1 , 1 

ϕ 1 

= 

1 

τS�1 

. (72) 

In our setup, �0 = 1 ∀ λ, �1 = 0 if λ = 0 (in this case the

price ˜ P 1 is not informative), and �1 > 0 if λ > 0. Rela- 

tionships (71) and (72) make the calculations that follow 

straightforward. The normalized price signals become: 

˜ Q 0 = ̃

 U − 1 

τS�0 ̃

 X 0 (73) 

˜ Q 1 = ̃

 U − 1 

τS�1 ̃

 X 1 . (74) 

Period 1 Consider an investor i who, at date t = 1 , col-

lects ω 

i 
1 

≥ 1 additional signals. At date t = 1 , investor i 

chooses ˜ D 

i 
1 

to maximize expected utility of final wealth: 

max ˜ D i 
1 

E 

[ 
−e −

1 
τ
˜ W 

i 
2 |F 

i 
1 

] 
, (75) 

where the final wealth at date t = 2 (at liquidation) is ˜ W 

i 
2 = X 

i ˜ P 0 + ̃

 D 

i 
0 

(˜ P 1 − ˜ P 0 
)

+ ̃

 D 

i 
1 

(˜ U − ˜ P 1 
)
, (76) 

and F 

i 
1 

represents the total information available at date 

t = 1 . This information is given by ˜ Z i 
1 
, ˜ Z i 

0 
(private signals) 

and 

˜ Q 1 , 
˜ Q 0 (public signals, informationally equivalent to 

prices). Note that ˜ Z i 
0 

represents only one signal of preci- 

sion S , but ˜ Z i 
1 

represents the average of the ω 

i 
1 

additional 

signals collected by the investor at date t = 1 ( ω 

i 
1 

signals

of equal precision S are informationally equivalent to their 

average, a single signal with precision ω 

i 
1 
S). Based on this 

information (i.e., ̃  Z i 
0 
, ̃  Z i 

1 
, ˜ Q 0 , and 

˜ Q 1 ), investor i updates her 

expectations regarding ˜ U and her posterior variance 

K 

i 
1 = V ar −1 

[˜ U | ̃  Z i 1 , ̃
 Z i 0 , ̃

 Q 1 , ̃
 Q 0 

]
(77) 

˜ μi 
1 = E 

[˜ U | ̃  Z i 1 , ̃
 Z i 0 , ̃

 Q 1 , ̃
 Q 0 

]
, (78) 

using the Projection Theorem (see, e.g., DeGroot, 2005 ): 

(Projection Theorem) . Consider the n-dimensional normal 

random variable 

( θ, s ) ∼ N 

([
μθ

μs 

]
, 

[
�θ,θ �θ,s 

�s,θ �s,s 

])
. (79) 

Provided �s, s is non-singular, the conditional density of θ
given s is normal with conditional mean and conditional 

variance–covariance matrix: 

E [ θ | s ] = μθ + �θ,s �
−1 
s,s ( s − μs ) (80) 

Var [ θ | s ] = �θ,θ − �θ,s �
−1 
s,s �s,θ . (81) 

From this theorem, we obtain 

K 

i 
1 = H + S + Sω 

i 
1 + τ 2 S 2 �

(
�2 

0 + �2 
1 

)
(82) 

˜ μi 
1 = 

1 

K 

i 
1 

[
S ̃  Z i 0 + Sω 

i 
1 ̃

 Z i 1 + τ 2 S 2 �
(
�2 

0 ̃
 Q 0 + �2 

1 ̃
 Q 1 

)]
. (83) 

The normality assumption along with the exponential util- 

ity function then imply that the optimal demand of trader 

i in period 1 has the standard form: 
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−K 0 
 

i 
0 
K 1 

 

i 
1 (K 1 −K 0
K 0 −S�1

 (K 1 −S�

K 0 −S�1
˜ D 

i 
1 = τK 

i 
1 

(˜ μi 
1 − ˜ P 1 

)
. (84)

Replacing (83) in (84) we obtain ˜ D 

i 
1 = τ

[
S ̃  Z i 0 + Sω 

i 
1 ̃

 Z i 1 + τ 2 S 2 �
(
�2 

0 ̃
 Q 0 + �2 

1 ̃
 Q 1 

)
− K 

i 
1 ̃

 P 1 
]
. 

(85)

We can now integrate the optimal demands to obtain the

total demand. We follow the convention used by Admati

(1985) that 
∫ 1 

0 
˜ Z i 

j 
= ̃

 U , almost surely. Importantly, we have

to keep track of the heterogeneity in information endow-

ments when aggregating all individual demands. In partic-

ular, at time t = 1 there is an infinity of types of investors

with respect to their number of signals, and within each

type there is a continuum of investors. Consequently, the

total demand at time t = 1 satisfies 

˜ D 1 = 

∫ 1 

0 

˜ D 

i 
1 = 

∑ 

n ∈ N 

[
π1 (n ) 

∫ 
{ i : ω i 

1 
= n } ̃

 D 

i 
1 

]
, (86)

which yields 

˜ D 1 = τ
[
S ( �0 + �1 ) ̃  U + τ 2 S 2 �

(
�2 

0 ̃
 Q 0 + �2 

1 ̃
 Q 1 

)
− K 1 ̃

 P 1 
]
, 

(87)

where K 1 is the average precision across the entire popu-

lation of agents: 

K 1 ≡
∫ 1 

0 

K 

i 
1 = 

∞ ∑ 

ω i 
1 
=0 

K 1 (ω 

i 
1 ) π1 (ω 

i 
1 ) 

= H + S ( �0 + �1 ) + τ 2 S 2 �
(
�2 

0 + �2 
1 

)
. (88)

Replacing (74) in (87) we obtain ˜ D 1 = τ [(S�0 + S�1 + τ 2 S 2 ��2 
1 ) ̃

 U 

+ τ 2 S 2 ��2 
0 ̃

 Q 0 − τ�S�1 ̃
 X 1 − K 1 ̃

 P 1 ] . (89)

Once we impose market clearing, ˜ D 1 = ̃

 X 0 + ̃

 X 1 , we can use

the conjecture for the price ˜ P 1 in Eq. (69) to get the unde-

termined coefficients ϕ1 , ξ 1 , and α1, 1 : 

ϕ 1 = 

S�1 

(
1 + τ 2 S��1 

)
K 1 

, (90)

ξ1 = 

S�0 

(
1 + τ 2 S��0 

)
K 1 

, (91)

α1 , 1 = 

1 + τ 2 S��1 

τK 1 

. (92)

We can now verify that, indeed, 
α1 , 1 
ϕ 1 

= 

1 
τS�1 

, hence val-

idating the conjecture in (72) . Furthermore, the unde-

termined coefficients of ˜ P 1 of the conjectured form in

(67) are 

β1 = 

K 1 − H 

K 1 

(93)

α1 , 0 = 

1 + τ 2 S��0 

τK 1 

(94)

�(k ) ≡

⎡ ⎢ ⎢ ⎣ 

1 
K i 

0 

τ (K i 1 −K 1 ) 

K 1 

K 1
K

τ (K i 1 −K 1 ) 

K 1 

τ 2 K i 1 [ K 0 S 
2 �1 (�1 −k )+ kSK 1 (K 1 −K 0 ) ] 
K 2 

1 
(K 1 −K 0 −S�1 ) 

− τS�1 K

K 2 
1 
(K 1 −

K 1 −K 0 
K i 

0 
K 1 

− τS�1 K 
i 
1 (K 1 −K 0 ) 

K 2 
1 
(K 1 −K 0 −S�1 ) 

(K 1 −K 0 ) 
2

K i 
0 
K 2 

1 
(K 1 −
α1 , 1 = 

1 + τ 2 S��1 

τK 1 

, (95)

and thus ˜ P 1 can be written 

˜ P 1 = 

K 1 − H 

K 1 

˜ U − 1 + τ 2 S��0 

τK 1 

˜ X 0 − 1 + τ 2 S��1 

τK 1 

˜ X 1 , (96)

which, after using (73) and (74) , becomes: 

˜ P 1 = 

S�0 + τ 2 S 2 ��2 
0 

τK 1 

˜ Q 0 + 

S�1 + τ 2 S 2 ��2 
1 

τK 1 

˜ Q 1 . (97)

Period 0 The problem of investor i at time t = 0 is 

max ˜ D i 
0 

E 

[ 
−e −

1 
τ [ X i ˜ P 0 + ̃  D i 0 ( ̃  P 1 −˜ P 0 ) + ̃  D i 1 ( ̃  U −˜ P 1 ) ] | ̃  Z i 0 , ̃

 Q 0 

] 
. (98)

Observe that, at time t = 0 , investor i needs to estimate˜ 

 , ˜ D 

i 
1 
, and 

˜ P 1 , after observing ˜ Z i 
0 

and 

˜ Q 0 . 
˜ D 

i 
1 

and 

˜ P 1 are

given by (84) and (96) , respectively. Note also that ˜ D 

i 
1 

de-

pends on the future number of additional signals at time

t = 1 , which is unknown to the investor at time t = 0 . The

following lemma shows that this uncertainty about ω 

i 
1 

is

irrelevant for portfolio choice. 

Lemma A.2 . When agent i builds her portfolio, her future

number of signals is irrelevant. 

Proof . The value function V 

i of agent i at time t = 0 is given

by 

 

i (W 0 ) = e −
1 
τ W 0 max ˜ D i 

0 

E 

[ 
−e −

1 
τ [ ̃  D i 0 ( ̃  P 1 −˜ P 0 ) + ̃  D i 1 (ω 

i 
1 ) ( ̃  U −˜ P 1 ) ] | ̃  Z i 0 , ̃

 Q 0 

]
(99)

= e −
1 
τ W 0 max ˜ D i 

0 

∑ 

k ∈ N 
π1 (k ) 

× E 

[ 
−e −

1 
τ [ ̃  D i 0 ( ̃  P 1 −˜ P 0 ) + ̃  D i 1 (k ) ( ̃  U −˜ P 1 ) ] | ̃  Z i 0 , ̃

 Q 0 ;ω 

i 
1 = k 

] 
︸ ︷︷ ︸ 

g ( k, ̃  D i 
0 ) 

, (100)

where π1 ( k ) represents the probability of receiving k addi-

tional signals at time 1 and g represents an expectation of

an exponential affine quadratic normal variable. To derive

its explicit form, we use the following standard result from

multivariate normal calculus: �

Lemma A.3 . Consider a random vector z ∼ N (0, �) . Then, 

E 
[
e z 

′ F z+ G ′ z+ H ] = | I − 2�F | − 1 
2 e 

1 
2 G 

′ ( I−2�F ) 
−1 �G + H . 

In our particular case, the vector z of random variables

is given by z = [ ̃  U 

˜ D 

i 
1 
(k ) ˜ P 1 ] 

′ . Tedious computations then

show that 

g 
(
k, ̃  D 

i 
0 

)
= −| I − 2�(k ) F | − 1 

2 

× e 
1 
2 G ( k, ̃  D i 0 ) 

′ 
( I−2�(k ) F ) 

−1 
�(k ) G ( k, ̃  D i 0 ) + H ( k, ̃  D i 0 ) , (101)

where 

 

) 

 

) 

1 ) 

 

) 

⎤ ⎥ ⎥ ⎦ 

(102) 
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V

F ≡

⎡ ⎣ 

0 − 1 
2 τ 0 

− 1 
2 τ 0 

1 
2 τ

0 

1 
2 τ 0 

⎤ ⎦ (103) 

G (k, ̃  D 

i 
0 ) ≡

⎡ ⎢ ⎢ ⎣ 

SK i 1 ( ̃
 Q 0 −˜ Z i 0 ) 

K 1 

S( ̃  Q 0 −˜ Z i 0 ) 

τK 1 

τSK i 1 ( ̃
 Z i 0 −˜ Q 0 ) −K 1 ̃  D i 0 
τK 1 

⎤ ⎥ ⎥ ⎦ 

(104) 

H(k, ̃  D 

i 
0 ) ≡

˜ D 

i 
0 [ K 

i 
0 (K 1 ̃

 P 0 − S( ̃  Q 0 −˜ Z i 0 )) −SK 1 ( ̃  Z i 0 + τ 2 S�˜ Q 0 )] 

τK 

i 
0 
K 1 

− S 2 K 

i 
1 ( ̃

 Q 0 −˜ Z i 0 ) 
2 

K 

2 
1 

. (105) 

Further computations show that 

h (k ) ≡ | I − 2�(k ) F | − 1 
2 = 

√ 

τ 2 �K 

2 
1 

K 

i 
1 
(1 + τ 2 S��1 + τ 2 �K 1 ) 

, 

(106) 

and 

q ( ̃  D 

i 
0 ) ≡

1 

2 

G 

(
k, ̃  D 

i 
0 

)′ 
( I − 2�(k ) F ) 

−1 
�(k ) G 

(
k, ̃  D 

i 
0 

)
+ H 

(
k, ̃  D 

i 
0 

)
(107) 

= 

˜ P 0 ̃  D 

i 
0 

τ
−

�
[˜ D 

i 
0 + τS( ̃  Q 0 −˜ Z i 0 ) 

]2 

2 [ 1 + τ 2 �(K 1 + S�1 ) ] 

+ 

˜ D 

i 
0 

[
2 τS( ̃  Z i 0 + τ 2 S�˜ Q 0 ) − ˜ D 

i 
0 

]
2 τ 2 [ S�1 (1 + τ 2 S��1 ) − K 1 ] 

, (108) 

which does not depend on k . Plugging these expressions 

into (101) , agent i solves 

 

i (W 0 ) = e −
1 
τ W 0 

( ∑ 

k ∈ N 
π1 (k ) h (k ) 

) 

︸ ︷︷ ︸ 
Anticipation of future signals 

max ˜ D i 
0 

−e q ( ̃
 D i 0 ) , (109) 

and it follows that her portfolio decision is independent of 

her expectation regarding her future number of signals. 

To obtain agent i ’s optimal demand, we solve the prob- 

lem in (109) and impose optimality 

∂ 

∂ ̃  D 

i 
0 

q 
(
n 0 , ̃

 D 

i 
0 

)
= 0 . 

We integrate the resulting optimal demand and impose 

market clearing in order to solve for the undetermined co- 

efficients of ˜ P 0 , i.e., β0 and α0, 0 . The solutions for these 

coefficients are: 

β0 = 

K 0 − H 

K 0 

, α0 , 0 = 

1 + τ 2 S��0 

τK 0 

, (110) 

where 

K 0 = K 

i 
0 = H + S + τ 2 S 2 ��2 

0 (111) 

˜ μi 
0 = 

1 

K 0 

(
S ̃  Z i 0 + τ 2 S 2 ��2 

0 ̃
 Q 0 

)
. (112) 

Note that K 0 = K 

i 
0 

because all investors start with one sig- 

nal at time 0. The optimal demand of investor i at time 

t = 0 is 
˜ D 

i 
0 = τS 

(˜ Z i 0 − ˜ Q 0 

)
= τ

(
S ̃  Z i 0 + τ 2 S 2 ��2 

0 ̃
 Q 0 − τ 2 S 2 ��2 

0 ̃
 Q 0 − S ̃  Q 0 

)
(113) 

= τ
[ 

S ̃  Z i 0 + τ 2 S 2 ��2 
0 ̃

 Q 0 −
(
S + τ 2 S 2 ��2 

0 

) 1 

β0 ̃

 P 0 

] 
(114) 

= τK 

i 
0 

(
E 

i 
0 [ ̃

 U |F 

i 
0 ] − ˜ P 0 

)
. (115) 

At this point, we can use (110) and (111) to verify that, in- 

deed, 
α0 , 0 

β0 
= 

1 
τS�0 

, which validates the conjecture in (71) . 

Then 

˜ P 0 = β0 ̃
 Q 0 = 

K 0 − H 

K 0 

˜ U − 1 + τ 2 S��0 

τK 0 

˜ X 0 . (116) 

The solution can then be written in a recursive form and 

extended to more than two trading periods, as done in 

Theorem 2.1 . The recursive form for prices follows from 

(116) and (96) ; the recursive form for individual precisions 

follows from (111) and (82) ; the recursive form for individ- 

ual demands follows from (113) –(115) and (84) and (85) . 

Appendix B 

B1. Proof of Proposition 2 

Define ˜ μi 
t ≡ E t [ ̃  U |F 

i 
t ] and start with the following 

lemma. 

Lemma B.1 . Y i t ≡ K t ( ̃  P t − ˜ μi 
t ) is a martingale under agent i’s 

information set: 

E 

[
Y i t+1 |F 

i 
t 

]
= Y i t . (117) 

Proof . Compute first the expected stock price tomorrow 

as 

E 

[
P t+1 |F 

i 
t 

]
= 

K t+1 − H 

K t+1 

˜ μi 
t 

−
t ∑ 

j=0 

1 + τ 2 S� j �

τK t+1 

E 

[˜ X j 

∣∣F 

i 
t 

]
(118) 

= 

K t+1 − H 

K t+1 

˜ μi 
t −

t ∑ 

j=0 

S� j + τ 2 S 2 �2 
j 
�

K t+1 

( ̃  μi 
t − ˜ Q j ) (119) 

= 

K t+1 − K t 

K t+1 

˜ μi 
t + 

t ∑ 

j=0 

S� j + τ 2 S 2 �2 
j 
�

K t+1 

˜ Q j . (120) 

Moreover, observe that since ˜ P t ∈ F 

i 
t , we also have that 

˜ P t = E 

[˜ P t 
∣∣F 

i 
t 

]
= 

t ∑ 

j=0 

S� j + τ 2 S 2 �2 
j 
�

K t 

˜ Q j . (121) 

Multiply (120) by K t+1 and subtract K t+1 ̃  μi 
t to obtain 

E 

[
K t+1 (P t+1 − ˜ μi 

t+1 ) |F 

i 
t 

]
= −K t ̃  μi 

t + 

t ∑ 

j=0 

(S� j + τ 2 S 2 �2 
j �) ̃  Q j , (122) 

which follows from the fact that, by the law of iterated ex- 

pectations 

E [ ̃  μi 
t+1 |F 

i 
t ] = 

˜ μi 
t . (123) 
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Similarly, multiply (121) by K t and subtract K t ̃  μi 
t to ob-

tain 

K t ( ̃  P t − ˜ μi 
t ) = −K t ̃  μi 

t + 

t ∑ 

j=0 

(S� j + τ 2 S 2 �2 
j �) ̃  Q j . (124)

Clearly, comparing (122) and (124) , K t ( ̃  P t − ˜ μi 
t ) is a martin-

gale under F 

i 
t . �

Rearranging the martingale relation of Lemma B.1 , we

obtain 

E 

[
P t+1 |F 

i 
t 

]
= 

K t 

K t+1 ̃

 P t + 

K t+1 − K t 

K t+1 

˜ μi 
t (125)

and Proposition 2 follows. 

B2. Proof of Proposition 3 

The weighted average E t [ ̃  U ] obtains from the market

clearing condition 

t ∑ 

j=0 ̃

 X j = 

∫ 1 

0 

˜ D 

i 
t di (126)

= 

∫ 1 

0 

τK 

i 
t 

(
E [ ̃  U |F 

i 
t ] − ˜ P t 

)
di (127)

= 

∫ 1 

0 

τK 

i 
t E [ ̃  U |F 

i 
t ] di − τK t ̃

 P t (128)

= τK t 

⎛ ⎜ ⎜ ⎝ 

∫ 1 

0 

K 

i 
t E [ ̃  U |F 

i 
t ] 

K t 
di ︸ ︷︷ ︸ 

E t [ ̃  U ] 

−˜ P t 

⎞ ⎟ ⎟ ⎠ 

, (129)

and thus every price is of the form 

˜ P t = E t [ ̃  U ] − 1 

τK t 

t ∑ 

j=0 ̃

 X j , (130)

and thus ˜ P t+1 − ˜ P t = 

(
E t+1 [ ̃  U ] − E t [ ̃  U ] 

)
+ 

K t+1 − K t 

τK t K t+1 

t ∑ 

j=0 ̃

 X j −
1 

τK t+1 ̃

 X t+1 . (131)

B3. Proof of Proposition 4 

First, notice that 

E 

[˜ U |F 

c 
t 

]
= 

1 

K 

c 
t 

t ∑ 

j=0 

τ 2 S 2 �2 
j �

˜ Q j , (132)

and thus the price in (121) satisfies 

˜ P t = 

t ∑ 

j=0 

S� j 

K t 

˜ Q j + 

K 

c 
t 

K t 
E 

[˜ U |F 

c 
t 

]
. (133)

Further, we know that 

˜ P t = E t [ ̃  U ] − 1 

τK t 

t ∑ 

j=0 ̃

 X j , (134)
and thus the average market expectations at time t can be

written as 

E t [ ̃  U ] = 

∑ t 
j=0 S� j 

K t 

˜ U + 

K t −
∑ t 

j=0 S� j 

K t 
E 

[˜ U |F 

c 
t 

]
(135)

≡ αt ̃
 U + (1 − αt ) E 

[˜ U |F 

c 
t 

]
. (136)

Taking this expression one step forward and applying the

law of iterated expectations with respect to the common

information set at time t , F 

c 
t , we obtain 

E 

[
Ē t+1 [ ̃  U ] 

∣∣F 

c 
t 

]
= E 

[
αt+1 ̃

 U + (1 − αt+1 ) E 

[˜ U | F c t+1 

]∣∣F 

c 
t 

]
(137)

= αt+1 E 

[˜ U | F c t 

]
+ (1 − αt+1 ) E 

[˜ U | F c t 

]
(138)

= E 

[˜ U | F c t 

]
. (139)

Furthermore, notice that 

E 

[
E t [ ̃  U ] |F 

c 
t 

]
= E 

[
αt ̃

 U |F 

c 
t 

]
+ (1 − αt ) E 

[˜ U | F c t 

]
(140)

= αt E 

[˜ U | F c t 

]
+ (1 − αt ) E 

[˜ U | F c t 

]
(141)

= E 

[˜ U | F c t 

]
(142)

and thus 

E 

[
E t+1 [ ̃  U ] − E t [ ̃  U ] 

∣∣F 

c 
t 

]
= 0 . (143)

Using (143) to compute the common expectation of (18) ,

we finally get 

E 

[˜ P t+1 − ˜ P t 
∣∣F 

c 
t 

]
= 

K t+1 − K t 

τK t K t+1 

t ∑ 

j=0 

E 

[˜ X j 

∣∣F 

c 
t 

]
(144)

which yields the first part of Proposition 4 . To obtain the

second part of the proposition, apply the law of iterated

expectations to (125) with respect to F 

c to obtain 

E [ P t+1 |F 

c 
t ] = 

K t 

K t+1 ̃

 P t + 

K t+1 − K t 

K t+1 

E 

[˜ U 

∣∣F 

c 
t 

]
(145)

and thus 

E 

[
P t+1 − ˜ P t |F 

c 
t 

]
= 

K t+1 − K t 

K t+1 

(
E 

[˜ U 

∣∣F 

c 
t 

]
− ˜ P t 

)
(146)

= 

K t+1 − K t 

K t+1 K 

c 
t 

(
K 

c 
t E 

[˜ U 

∣∣F 

c 
t 

]
− K 

c 
t ̃

 P t 
)
. (147)

Using (121) and (132) , we know that 

K t ̃
 P t = 

t ∑ 

j=0 

S� j ̃
 Q j + 

t ∑ 

j=0 

τ 2 S 2 �2 
j �

˜ Q j . (148)

K 

c 
t E 

[˜ U 

∣∣F 

c 
t 

]
= 

t ∑ 

j=0 

τ 2 S 2 �2 
j �

˜ Q j = K t ̃
 P t −

t ∑ 

j=0 

S� j ̃
 Q j , (149)

where the second equality in (149) results from (148) .

Plugging this into (147) , we get 

E 

[
P t+1 − ˜ P t |F 

c 
t 

]
= 

K t+1 − K t 

K t+1 K 

c 
t 

( 

(K t − K 

c 
t ) ̃

 P t −
t ∑ 

j=0 

S� j ̃
 Q j 

) 

. 

(150)
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Finally, observing that K t − K 

c 
t = 

∑ t 
j=0 S� j , we obtain the 

second part of Proposition 4 : 

E 

[
P t+1 − ˜ P t |F 

c 
t 

]
= 

K t+1 − K t 

K t+1 K 

c 
t 

t ∑ 

j=0 

S� j 

(˜ P t − ˜ Q j 

)
. (151) 

B4. Proof of Proposition 5 

Conditioning (151) on F 

r requires computing the fol- 

lowing expectation: 

E 

[˜ P t − ˜ Q j |F 

r 
t 

]
, ∀ j = 0 , . . . , t, (152) 

which amounts to derive the recursive relation between 

the information sets F 

c and F 

r . To do so, we first use 

(148) and obtain 

˜ P t = 

K t−1 

K t 

˜ P t−1 + 

K t − K t−1 

K t 

˜ Q t , (153) 

from which we derive 

˜ P t − ˜ Q t = 

K t−1 

K t 
( ̃  P t−1 − ˜ Q t ) (154) 

˜ P t − ˜ P t−1 = −K t − K t−1 

K t 
( ̃  P t−1 − ˜ Q t ) . (155) 

Replacing (155) in (154) , we further get 

˜ P t − ˜ Q t = −K t−1 

K t 

K t 

K t − K t−1 

( ̃  P t − ˜ P t−1 ) 

= − K t−1 

K t − K t−1 

( ̃  P t − ˜ P t−1 ) . (156) 

Accordingly, the expectation for j = t in (152) writes 

E 

[˜ P t − ˜ Q t |F 

r 
t 

]
= − K t−1 

K t − K t−1 

( ̃  P t − ˜ P t−1 ) . (157) 

Proceeding similarly for j = t − 1 , we obtain the following 

recursive relation: 

E 

[˜ P t − ˜ Q t−1 |F 

r 
t 

]
= E 

[˜ P t − ˜ P t−1 + ̃

 P t−1 − ˜ Q t−1 |F 

r 
t 

]
(158) 

= ( ̃  P t − ˜ P t−1 ) + E 

[˜ P t−1 − ˜ Q t−1 |F 

r 
t 

]
. (159) 

Iterating over this recursive relation, the sum in (151) can 

be written as 

t ∑ 

j=0 

S� j ( ̃  P t − ˜ Q j ) = 

( 

t−1 ∑ 

k =0 

S�k − S�t 
K t−1 

K t − K t−1 

) 

( ̃  P t − ˜ P t−1 ) 

+ 

( 

t−2 ∑ 

k =0 

S�k − S�t−1 
K t−2 

K t−1 − K t−2 

) 

( ̃  P t−1 − ˜ P t−2 ) 

+ · · · + 

( 

j−1 ∑ 

k =0 

S�k − S� j 

K j−1 

K j − K j−1 

) 

( ̃  P j − ˜ P j−1 ) 

+ · · · + 

(
S�0 − S�1 

K 0 

K 1 − K 0 

)
( ̃  P 1 − ˜ P 0 ) 

+ 

(
−S�0 

H 

K 0 − H 

)
( ̃  P 0 − 0) , (160) 

which pins down the recursive equivalence between F 

c 

and F 

r . Inspecting (160) shows that the coefficient of 

( ̃  P t−l+1 − ˜ P t−l ) is: 
t−l ∑ 

k =0 

S�k −
S�t−l+1 

(K t−l+1 − K t−l ) /K t−l 

(161) 

and thus the sum in (151) can be written recursively as 

t ∑ 

j=0 

S� j ( ̃  P t − ˜ Q j ) = 

t+1 ∑ 

l=1 

( 

t−l ∑ 

k =0 

S�k −
S�t−l+1 

(K t−l+1 − K t−l ) /K t−l 

) 

× ( ̃  P t−l+1 − ˜ P t−l ) (162) 

≡
t+1 ∑ 

l=1 

m t−l ( ̃  P t−l+1 − ˜ P t−l ) (163) 

and the relation in (25) follows. 

B5. Proof of Theorem 3.1 (momentum condition) 

Using the relation in (25) , if K t+1 > K t , a sufficient con-

dition for momentum to obtain at lag l is that m t−l > 0 .

We can therefore express the momentum condition at lag 

l as 

t−l ∑ 

j=0 

S� j > 

K t−l 

K t−l+1 − K t−l 

S�t−l+1 , (164) 

which implies 

K t−l+1 − K t−l 

K t−l 

> 

S�t−l+1 ∑ t−l 
j=0 S� j 

. (165) 

This gives the momentum condition (30) in Theorem 3.1 : 

(K t−l+1 − K t−l ) /K t−l 

S�t−l+1 / 
∑ t−l 

j=0 S� j 

= εt−l > 1 . (166) 

The last part of the claim follows directly from inspecting 

the last lag l = t + 1 , which satisfies 

m −1 ( ̃  P 0 − ˜ P −1 ) ≡ − H 

1 + τ 2 S��0 ̃

 P 0 . (167) 

For the limit when t → ∞ , we need to compute: 

lim 

t→∞ 

K t+1 − K t 

K t+1 K 

c 
t 

= lim 

t→∞ 

1 

K 

c 
t 

− lim 

t→∞ 

K t 

K t+1 K 

c 
t 

. (168) 

The first limit is zero. For the second limit, notice that: 

1 

K t+1 

< 

K t 

K t+1 K 

c 
t 

≤ 1 

K 

c 
t 

, (169) 

and both bounds go to zero as t → ∞ . Thus, the second 

limit is also zero, and we obtain 

lim 

t→∞ 

K t+1 − K t 

K t+1 K 

c 
t 

m −1 = 0 . (170) 

B6. Proof of Theorem 3.2 

The proof is organized in three parts. We first prove 

that there exists a unique threshold such that the momen- 

tum condition in (30) is satisfied. Second, we show how 

this threshold is related to the parameters of the model. 

Third, we prove that prices are martingales for λ = 0 and 

λ → ∞ . 
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Note first that 

t ∑ 

k =0 

�k = e λt (171)

t ∑ 

k =0 

�2 
k = 

e 2 λt (e λ − 1) + 2 

e λ + 1 

, (172)

and thus 

K t−l = H + Se λ(t−l) + τ 2 S 2 �
e 2 λ(t−l) (e λ − 1) + 2 

e λ + 1 

(173)

K t−l+1 = H + Se λ(t−l+1) + τ 2 S 2 �
e 2 λ(t−l+1) (e λ − 1) + 2 

e λ + 1 

. 

(174)

The momentum threshold Eq. (30) can be written 

(e λ − 1) K t−l = K t−l+1 − K t−l , (175)

from which we obtain Eq. (31) : 

λ� (H, S, �, τ, t − l) = ln 

(
K t−l+1 

K t−l 

)
. (176)

Furthermore, plugging (173) and (174) in the right-hand

side of (175) we can write 

(e λ − 1) K t−l = Se λ(t−l) (e λ − 1) 

+ τ 2 S 2 �
e 2 λ(t−l) (e λ − 1) 

e λ + 1 

(e 2 λ − 1) , (177)

and thus 

K t−l = Se λ(t−l) + τ 2 S 2 �e 2 λ(t−l) (e λ − 1) , (178)

from which we derive the following equation in λ: 

e λ[2(t−l)+1] 
(
e λ − 1 

)
− 2 

e λ + 1 

= 

H 

τ 2 S 2 �
. (179)

Define the function on the left-hand side as g ( λ). It takes

values on [ −1 , ∞ ) , with g(0) = −1 and lim λ→∞ 

g(λ) = ∞ ,

and is increasing in λ: 

g ′ (λ) = 

e λ[2(t−l)+1] [ 2(t − l) sinh (λ) + sinh (λ) + 1 ] + 1 

(e λ + 1) 2 

× 2 e λ > 0 , (180)

and thus Eq. (179) has a unique solution. 

Applying the Implicit Function Theorem to Eq. (179) al-

lows us to prove the second part of Theorem 3.2 : if H is

larger, then the threshold is harder to reach. If τ , S , and �

are larger, the threshold is easier to reach. If t − l is large,

the threshold is easier to reach. Therefore, the threshold

λ� (H, S, �, τ, t − l) is increasing in H and decreasing in S,

�, τ and, t − l. 

Using the fact that the threshold is decreasing in t − l,

we obtain an upper bound for λ� . It takes its largest value

with t − l = 0 . In this special case, the threshold λ� is given

by 

e λ = 

H + 2 τ 2 S 2 �

τ 2 S 2 �
, (181)

and thus 

λ� (H, S, �, τ, t − l) ∈ 

(
0 , log 

(
2 + 

H 

�τ 2 S 2 

)] 
. (182)
For the third part of the theorem, we know from

Proposition 2 that when λ = 0 , returns are not pre-

dictable. When λ → ∞ , the coefficients of supply shocks in

Eqs. (18) and (27) become zero. Since return predictability

arises solely from the inference of current and past supply

shocks ( Proposition 4 ), prices become martingales in this

case. 

B7. Proof of Proposition 6 

Using Proposition 5 , we can write 

E 

[˜ P t+1 − ˜ P t |F 

r 
t 

]
= 

K t+1 − K t 

K t+1 K 

c 
t 

[
m t−1 ( ̃  P t − ˜ P t−1 ) + ̃

 X t−1 

]
, 

(183)

where ˜ X t−1 ≡
∑ t 

l=1 m t−1 −l ( ̃
 P t−l − ˜ P t−1 −l ) . Observing that

{ ̃  P t − ˜ P t−1 } ⊂ F 

r 
t and applying the law of iterated expecta-

tions, it follows that 

E 

[˜ P t+1 − ˜ P t | ̃  P t − ˜ P t−1 

]
= 

K t+1 − K t 

K t+1 K 

c 
t 

×
{

m t−1 ( ̃  P t − ˜ P t−1 ) + E 

[˜ X t−1 | ̃  P t − ˜ P t−1 

]}
. (184)

To compute the conditional expectation in the inner

bracket, further observe that Proposition 5 implies that 

˜ P t − ˜ P t−1 = 

K t − K t−1 

K t K 

c 
t−1 

˜ X t−1 + ε t−1 , (185)

where the noise ε t−1 is independent of ( ̃  P t−l − ˜ P t−1 −l ) , for

l = 1 , . . . , t, and thus of ˜ X t−1 . Hence, 

Cov 
[˜ P t − ˜ P t−1 , ̃

 X t−1 

]
= 

K t − K t−1 

K t K 

c 
t−1 

Var 
[˜ X t−1 

]
, (186)

which implies 

E 

[˜ X t−1 | ̃  P t − ˜ P t−1 

]
= 

Cov 
[˜ P t − ˜ P t−1 , ̃

 X t−1 

]
Var 

[˜ P t − ˜ P t−1 

] (˜ P t − ˜ P t−1 

)
(187)

= 

K t − K t−1 

K t K 

c 
t−1 

Var 
[˜ X t−1 

]
Var 

[˜ P t − ˜ P t−1 

](˜ P t − ˜ P t−1 

)
. (188)

Substituting back into (184) , we obtain 

E 

[˜ P t+1 − ˜ P t | ̃  P t − ˜ P t−1 

]
= 

K t+1 − K t 

K t+1 K 

c 
t 

×
[ 

m t−1 + 

K t − K t−1 

K t K 

c 
t−1 

Var 
[˜ X t−1 

]
Var 

[˜ P t − ˜ P t−1 

]] 

( ̃  P t − ˜ P t−1 ) . (189)

Appendix C 

C1. Proof of Proposition 7 

An application of Lemma B.1 yields agent i ’s expectation

regarding the future price: 

E 

[˜ P t+1 |F 

i 
t 

]
= 

K t 

K t+1 ̃

 P t + 

K t+1 − K t 

K t+1 

˜ μi 
t . (190)

Reorganize the relation in (190) as 

˜ μi 
t = E 

[˜ P t+1 |F 

i 
t 

]
− K t 

K t+1 ̃

 P t + 

K t 

K t+1 ̃

 μi 
t , (191)
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and substitute it in individual portfolio demands ˜ D 

i 
t = 

τK 

i 
t ( ̃  μi 

t − ˜ P t ) to obtain 

˜ D 

i 
t = τK 

i 
t 

(
E 

[˜ P t+1 |F 

i 
t 

]
− K t 

K t+1 ̃

 P t + 

K t 

K t+1 ̃

 μi 
t − ˜ P t 

)
. (192) 

Reorganizing yields the following decomposition 

˜ D 

i 
t = τK 

i 
t 

K t 

K t+1 

(
E [ ̃  U |F 

i 
t ] − ˜ P t 

)
+ τK 

i 
t 

(
E [ ̃  P t+1 |F 

i 
t ] − ˜ P t 

)
, (193) 

which can also be written as in Proposition 7 : 

˜ D 

i 
t = 

τK 

i 
t 

K t 

(
K 

2 
t 

K t+1 

(
E [ ̃  U |F 

i 
t ] − ˜ P t 

)
+ K t 

(
E [ ̃  P t+1 |F 

i 
t ] − ˜ P t 

))
. 

(194) 

C2. Proof of Proposition 8, Corollary 1 , and Corollary 2 

Recall that individual demands are given by ˜ D 

i 
t = K 

i 
t ( ̃  μi 

t − ˜ P t ) , (195) 

and the martingale condition of Lemma B.1 is 

E 

[
K t+1 ( ̃  P t+1 − ˜ μi 

t+1 ) |F 

i 
t 

]
= K t ( ̃  P t − ˜ μi 

t ) , (196) 

which can thus be interpreted as a condition on rescaled 

portfolios. In particular, we can write: 

E 

[
K t+1 

K 

i 
t+1 ̃

 D 

i 
t+1 |F 

i 
t 

]
= 

K t 

K 

i 
t ̃

 D 

i 
t , (197) 

which is the result of Proposition 8 . 

Proof of Corollary 1 . From Lemma B.1 , we know that: 

E 

[
K t+1 ( ̃  μi 

t+1 − ˜ P t+1 ) |F 

i 
t 

]
= K t ( ̃  μi 

t − ˜ P t ) . (198) 

Further, if agent i ’s precision, K 

i 
t , coincides with the av- 

erage market precision, K t , then 

E 

[
K 

i 
t+1 |F 

i 
t 

]
= K 

i 
t + K t+1 − K t = K t+1 , (199) 

that is, the agent expects to remain the “average agent”

next period. Thus, 

E 

[˜ D 

i 
t+1 − ˜ D 

i 
t | F i t 

]
=E [ τK 

i 
t+1 ( ̃  μi 

t+1 −˜ P t+1 ) − τK 

i 
t ( ̃  μi 

t − ˜ P t ) | F i t ] 

(200) 

= τ
{
E 

[
K t+1 ( ̃  μi 

t+1 − ˜ P t+1 ) |F 

i 
t 

]
− K t ( ̃  μi 

t − ˜ P t ) 
}

(201) 

= 0 . (202) 

Proof of Corollary 2 . We can write 

E 

[˜ D 

i 
t+1 |F 

i 
t 

]
= τE 

[
K 

i 
t+1 ̃

 μi 
t+1 − K 

i 
t+1 ̃

 P t+1 |F 

i 
t 

]
(203) 

= τE 

[
K 

i 
t+1 ̃

 μi 
t+1 |F 

i 
t 

]
− τE 

[
K 

i 
t+1 |F 

i 
t 

]
E 

[˜ P t+1 |F 

i 
t 

]
(204) 

where the second line follows from the fact that K 

i 
t+1 

and ˜ P t+1 are independent conditional on the information set F 

i 
t . 

Using 

˜ μi 
t = 

1 

K 

i 
t 

( 

t ∑ 

j=0 

Sω 

i 
j ̃

 Z i j + 

t ∑ 

j=0 

�τ 2 S 2 �2 
j ̃

 Q j 

) 

, (205) 
we can express conditional expectations recursively as 

K 

i 
t+1 ̃

 μi 
t+1 = K 

i 
t ̃

 μi 
t + Sω 

i 
t+1 ̃

 Z i t+1 + �τ 2 S 2 �t+1 ̃
 Q t+1 . (206) 

Observe that, since meetings are independent, an agent i 

expects to collect the average incremental number of sig- 

nals next period 

E 

[
ω 

i 
t+1 |F 

i 
t 

]
= �t+1 . (207) 

As a result, we have 

E 

[
K 

i 
t+1 ̃

 μi 
t+1 |F 

i 
t 

]
= K 

i 
t ̃

 μi 
t + S�t+1 E 

[˜ Z i t+1 |F 

i 
t 

]
+ �τ 2 S 2 �t+1 E 

[˜ Q t+1 |F 

i 
t 

]
(208) 

= K 

i 
t ̃

 μi 
t + S�t+1 ̃  μi 

t + �τ 2 S 2 �t+1 ̃  μi 
t (209) 

= (K 

i 
t + K t+1 − K t ) ̃  μi 

t (210) 

and 

E 

[
K 

i 
t+1 |F 

i 
t 

]
= K 

i 
t + K t+1 − K t . (211) 

Finally, using the relation (190) , we can write 

E 

[˜ D 

i 
t+1 |F 

i 
t 

]
= τ

(
K 

i 
t + K t+1 − K t 

)(˜ μi 
t − E 

[˜ P t+1 |F 

i 
t 

])
(212) 

= τ
(
K 

i 
t + K t+1 − K t 

)(˜ μi 
t −

K t 

K t+1 ̃

 P t − K t+1 − K t 

K t+1 

˜ μi 
t 

)
(213) 

= τ
(
K 

i 
t + K t+1 − K t 

) K t 

K t+1 

(˜ μi 
t − ˜ P t 

)
(214) 

= 

(
K 

i 
t + K t+1 − K t 

) K t 

K t+1 

1 

K 

i 
t ̃

 D 

i 
t . (215) 

We can therefore compute 

E 

[˜ D 

i 
t+1 − ˜ D 

i 
t |F 

c 
t 

]
= 

[(
K 

i 
t + K t+1 − K t 

) K t 

K t+1 

1 

K 

i 
t 

− 1 

]
E 

[˜ D 

i 
t |F 

c 
t 

]
(216) 

= 

[ (
K 

i 
t + K t+1 − K t 

) K t 

K t+1 

− K 

i 
t 

] 
τ
(
E [ ̃  U |F 

c 
t ] − ˜ P t 

)
(217) 

= 

(K t − K 

i 
t )(K t+1 − K t ) 

K t+1 

τ
(
E [ ̃  U |F 

c 
t ] − ˜ P t 

)
, (218) 

where the second line follows by the law of iterated ex- 

pectations. 

C3. Proof of Proposition 9 

We know from Proposition 8, Corollary 2 that 

E 

[˜ D 

i 
t+1 − ˜ D 

i 
t |F 

c 
t 

]
= 

(K t − K 

i 
t )(K t+1 − K t ) 

K t+1 

τ
(
E [ ̃  U |F 

c 
t ] − ˜ P t 

)
. 

(219) 

Then, we restate here Eq. (146) : 

E [ ̃  U |F 

c 
t ] − ˜ P t = 

K t+1 

K t+1 − K t 
E [ ̃  P t+1 − ˜ P t |F 

c 
t ] . (220) 

Replacing (220) in (219) gives 

E 

[˜ D 

i 
t+1 − ˜ D 

i 
t |F 

c 
t 

]
= τ (K t − K 

i 
t ) E [ ̃  P t+1 − ˜ P t |F 

c 
t ] , (221) 

and then using Proposition 5 and the fact that F 

c 
t and F 

r 
t 

are equivalent information sets, we obtain 
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E 

[˜ D 

i 
t+1 − ˜ D 

i 
t |F 

r 
t 

]
= τ (K t − K 

i 
t ) 

×
t+1 ∑ 

l=1 

K t+1 − K t 

K t+1 K 

c 
t 

m t−l ( ̃  P t−l+1 − ˜ P t−l ) . (222)

C4. Risk-neutral arbitrageur 

In this appendix, we derive equilibrium solutions for

prices and optimal demands in the presence of an uncon-

strained, uninformed, risk-neutral arbitrageur, which we

summarize in Theorem C.1 below. 

Theorem C.1 . There exists a partially revealing rational-

expectations equilibrium in the four-trading session economy

in which the price signal, ˜ Q t , for t = 0 , . . . , 3 , satisfies 

˜ Q t = ̃

 U − 1 

τS�t ̃

 X t (223)

and in which the arbitrageur’s demand ̃  x t satisfies 

 x t = 

1 

2 λt 

( 

E 
[˜ P t+1 |{ ̃  Q j } t j=0 

]
− ϕ t ̃

 Q t −
t−1 ∑ 

j=0 

ξ j,t ̃
 Q j 

) 

. (224)

The price coefficients satisfy 

ϕ t = 

A t − τS 
∑ t−1 

j=0 � j 

D t 
, ξ j,t = 

B j,t + τS� j 

D t 
, 

γt = 

C t + 1 

D t 
, λt = 

1 

D t 
(225)

where A, B j , C, and D correspond to the coefficients of the

aggregate demand of informed traders ∫ 1 

0 

˜ D 

i 
t = A t ̃

 U + 

t−1 ∑ 

j=0 

B j,t ̃
 Q j − C t ̃  X t − D t ̃

 P t . (226)

Proof . We provide the proof for a two-trading session

economy. The model is solved backwards, starting from

date 1 and then going back to date 0. First, conjecture that

prices in period 0 and period 1 are ˜ P 0 = β0 ̃
 U − γ0 , 0 ̃

 X 0 + λ0 ̃  x 0 (227)

˜ P 1 = β1 ̃
 U − γ1 , 0 ̃

 X 0 − γ1 , 1 ̃
 X 1 + λ1 ̃  x 1 , (228)

where ˜ x represents the demand of the risk-neutral arbi-

trageur, on which we elaborate below. Consider the nor-

malized price signal in period zero (which is information-

ally equivalent to ˜ P 0 ): 

˜ Q 0 = 

1 

β0 

( ̃  P 0 − λ0 ̃  x 0 ) = ̃

 U − γ0 , 0 

β0 

˜ X 0 (229)

where the demand 

˜ x of the risk-neutral trader is observ-

able because she only trades on public information, i.e.,

prices. Replace ˜ X 0 from (229) into (227) to obtain ˜ P 1 = ϕ 1 ̃
 U + ξ1 ̃

 Q 0 − γ1 , 1 ̃
 X 1 + λ1 ̃  x 1 (230)

where ϕ 1 = β1 − γ1 , 0 
β0 
γ0 , 0 

and ξ1 = γ1 , 0 
β0 
γ0 , 0 

. We normalize

the price signal in period t = 1 and obtain 

˜ Q 1 : 

˜ Q 1 = 

1 

ϕ 1 

(˜ P 1 − ξ1 ̃
 Q 0 − λ1 ̃  x 1 

)
= ̃

 U − γ1 , 1 

ϕ 1 

˜ X 1 . (231)
Observing { ̃  Q 0 , ̃
 Q 1 } is equivalent to observing { ̃  P 0 , ̃

 P 1 } . As in

the setup of Section 2.2 , we conjecture the following rela-

tionships: 

˜ Q 0 = ̃

 U − 1 

τS�0 ̃

 X 0 (232)

˜ Q 1 = ̃

 U − 1 

τS�1 ̃

 X 1 . (233)

Period 1 At time t = 1 , both the precision and the pos-

terior mean of an investor i remain identical to those of

Section 2.2 in (83) along with her demand in (84) . In-

tegrating informed agents’ demand again yields (87) . The

risk-neutral agent solves 

max ˜ x 1 

˜ x 1 E[ ̃  U − ˜ P t | ̃  Q 0 , ̃
 Q 1 ] 

= max ˜ x 1 

˜ x 1 E[ ̃  U − ϕ 1 ̃
 Q 1 − ξ1 ̃

 Q 0 − λ1 ̃  x 1 | ̃  Q 0 , ̃
 Q 1 ] , (234)

and her optimal demand satisfies 

 x 1 = 

1 

2 λ1 

(
E[ ̃  U | ̃  Q 0 , ̃

 Q 1 ] − ϕ 1 ̃
 Q 1 − ξ1 ̃

 Q 0 

)
where 

E[ ̃  U | ̃  Q 0 , ̃
 Q 1 ] = 

τ 2 S 2 �
(
�2 

0 ̃
 Q 0 + �2 

1 ̃
 Q 1 

)
H + τ 2 S 2 �(�2 

0 
+ �2 

1 
) 

. (235)

The market clearing condition is ˜ D 1 + ̃

 x 1 = ̃

 X 0 + ̃

 X 1 . Once

we impose market clearing, we can use the conjectured

Eq. (230) to get the undetermined coefficients ϕ1 , ξ 1 , γ 1, 1 ,

and λ1 : 

ϕ 1 = 

S�1 

(
1 + τ 2 S��1 

)
K 1 

, 

ξ1 = 

S�0 

(
1 + τ 2 S��0 

)
K 1 

γ1 , 1 = 

1 + τ 2 S��1 

τK 1 

λ1 = 

1 

τK 1 

. (236)

From these solutions, we can verify that, indeed, 
γ1 , 1 
ϕ 1 

=
1 

τS�1 
. Hence, (72) is also verified in the presence of the

risk-neutral agent. 

Period 0 The problem of investor i at time t = 0 is, as in

Section 2.2 , 

max ˜ D i 
0 

E 

[ 
−e −

1 
τ
˜ W 

i 
2 | ̃  Z i 0 , ̃

 Q 0 

] 
(237)

where the expectation now takes into account the new

price function in (230) . Importantly, Lemma A.2 still holds

and informed agents’ portfolio remains independent of the

expected number of signals they will get in the future. The

risk-neutral agent solves 

max ˜ x 0 

˜ x 0 E[ ̃  P 1 − ˜ P 0 | ̃  Q 0 ] = max ˜ x 0 

˜ x 0 E[ ̃  P 1 − β0 ̃
 Q 0 − λ0 ̃  x 0 | ̃  Q 0 ] . 

(238)

The optimization problem in (238) only involves the prof-

its of period 0 because we assume that the risk-neutral

agent does not take into account that a deviation from her
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Fig. 9. Profits of the arbitrageur as a function of λ. The dashed line rep- 

resents the profits made by the arbitrageur. The shaded area represents 

the profits that arbitrageur forgoes. The calibration is H = S = � = 1 and 

τ = 1 / 3 . 

˜
 

˜

strategy will affect current and future price signals for in- 

formed agents who cannot detect a deviation in her strat- 

egy; in that sense, the risk-neutral agent is myopic. As a 

result, her optimal demand satisfies 

 x 0 = 

1 

λ0 

(
E[ ̃  P 1 | ̃  Q 0 ] − β0 ̃

 Q 0 

)
(239) 

where 

E[ ̃  P 1 | ̃  Q 0 ] = 

S 

(
2 τ 2 S� + 

H 
H+ S(�0 +�1 + τ 2 S�(�2 

0 
+�2 

1 
)) 

)
2(H + τ 2 S 2 ��2 

0 
) 

. (240) 

Integrating informed investors’ optimal demand and im- 

posing market clearing D 0 + ̃

 x 0 = ̃

 X 0 , we obtain β0 , γ 0, 0 , 

and λ0 . We can then verify that, indeed, 
γ0 , 0 

β0 
= 

1 
τS�0 

. By 

induction, the solution of the equilibrium for the trading 

dates takes the form in Theorem C.1 . �

Arbitrageur’s profits. In this section, we show that the ar- 

bitrageur can only make profits if she allows momentum 

to persist. She therefore optimally forgoes profits. To illus- 

trate this, we compute the unconditional profits � she ex- 

pects to make between time t and t + 1 . In particular, sim- 

ple computations show that 

� = E 
[˜ x t 
(˜ P t+1 − ˜ P t 

)]
= 

1 

λt 
E 

[ (
E 
[˜ P t+1 − ˜ P t |{ ̃  Q j } t j=0 

])2 
] 

= λt E 
[˜ x 2 t 

]
. 

We then compare these profits to those of an econome- 

trician, who is not strategic and ignores price impact ( λt 

≡ 1). The profits that the arbitrageur optimally forgoes to 

keep momentum in the model are therefore given by 

�′ = E 

[ (
E 
[˜ P t+1 − ˜ P t |{ ̃  Q j } t j=0 

])2 
] 

− �

= 

(
1 − 1 

λt 

)
E 

[ (
E 
[˜ P t+1 − ˜ P t |{ ̃  Q j } t j=0 

])2 
] 
. (241) 

We plot the profits she makes and the profits she for- 

goes at time t = 1 in Fig. 9 . For low meeting intensi- 

ties, Fig. 9 shows that the arbitrageur extracts half of the 
momentum rents, consistent with the behavior of a mo- 

nopolist. As the meeting intensity increases, however, the 

momentum profits she forgoes significantly increase. The 

reason is that she now trades against agents who are bet- 

ter informed on average; accordingly, she has a larger price 

impact and therefore trades less aggressively on momen- 

tum. We conclude that it is difficult to arbitrage away mo- 

mentum in a market characterized by fast diffusion of in- 

formation among investors. 

Appendix D 

D1. Dynamic setup ( Section 5.1 ) 

This appendix mainly follows Andrei (2013) . Consider 

the following processes for dividends and noisy supply: 

D t = κd D t−1 + ε d t (242) 

X t = κx X t−1 + ε x t (243) 

where 0 ≤ κd ≤ 1 and 0 ≤ κx ≤ 1. The dividend and sup- 

ply innovations are i.i.d. with normal distributions: ε d t ∼
N (0 , 1 /H) and ε x t ∼ N (0 , 1 / �) . There is one riskless bond

assumed to have an infinitely elastic supply at positive 

constant gross interest rate R . 

The economy is populated by a continuum of rational 

agents, indexed by i , with constant absolute risk aversion 

utilities and common risk aversion 1/ τ . Each agent lives for 

two periods, while the economy goes on forever (overlap- 

ping generations). All investors observe the past and cur- 

rent realizations of dividends and of the stock prices. Addi- 

tionally, each investor observes an information signal about 

the dividend innovation 3-steps ahead: 

 z i t = ε d t+3 + ̃

 ε i 
t . (244) 

As time goes by, investors share their private informa- 

tion at random meetings. The information structure and 

the probability density function over the number of pri- 

vate signals is described in Andrei (2013) . As usual in noisy 

rational expectations, we conjecture a linear function of 

model innovations for the equilibrium price: 

P t = αD t + βX t−3 + (a 3 a 2 a 1 ) ε
d 
t + (b 3 b 2 b 1 ) ε

x 
t . (245) 

Proposition 1 in Andrei (2013) describes the rational- 

expectations equilibrium, which is found by solving a 

fixed-point problem provided by the market clearing con- 

dition. Infinite-horizon models with overlapping genera- 

tions have multiple equilibria (there are 2 N equilibria for 

a model with N assets). The model studied here has two 

equilibria, one low volatility equilibrium and one high 

volatility equilibrium. We focus on the low volatility equi- 

librium, which is the limit of the unique equilibrium in the 

finite version of the model. 

To understand how the two equilibria arise, let us as- 

sume that there is no private information. In this case, the 

equilibrium price has a closed-form solution: 
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P t = 

κd 

R − κd 

D t − �

τ

κ3 
x 

R − κx 
X t−3 − �

τ

κ2 
x 

R − κx 
ε x t−2 

− �

τ

κx 

R − κx 
ε x t−1 −

�

τ

1 

R − κx 
ε x t , (246)

where � ≡ (α + 1) 2 σ 2 
d 

+ b 2 
1 
σ 2 

x . Thus, the coefficient b 1 has

to solve a quadratic equation: 

b 1 = − τ

R − κx 

[(
R 

R − κd 

)2 

σ 2 
d + b 2 1 σ

2 
x 

]
. (247)

For different parameter values, the above quadratic

equation can have two solutions, one solution, or none. In

this particular example (no private information), the auto-

covariance of stock returns, Cov ( P t+1 − P t , P t+2 − P t+1 ) , is 

Cov ( P t+1 − P t , P t+2 − P t+1 ) 

= −α2 σ 2 
d 

1 − κd 

1 + κd 

+ β2 (κx − 1) 2 κx 
σ 2 

x 

1 − κ2 
x 

+ 

(
β − b 3 b 3 − b 2 b 2 − b 1 b 1 

)⎛ ⎜ ⎝ 

−β(1 − κx ) 
β − b 3 
b 3 − b 2 
b 2 − b 1 

⎞ ⎟ ⎠ 

. 

(248)

It can be shown numerically that this covariance is gen-

erally negative when κd < 1 and κx < 1. In the random

walk specification (242) and (243) , the covariance is zero. 

If agents receive private information, the model has to

be solved numerically using the methodology described in

Andrei (2013) . More precisely, α, β , a , and b solve the fol-

lowing equations: 

(α + 1) κd − Rα = 0 (249)

K̄ t βκx − K̄ t Rβ − 1 

τ
κ3 

x = 0 (250)

K̄ t b 
∗
B 

−1 
A + L̄ t H − K̄ t Ra = 0 1 ×3 (251)

K̄ t b 
∗ + L̄ t B 

∗ − K̄ t Rb − 1 

τ

(
κ2 

x κx 1 

)
= 0 1 ×3 , (252)

where K̄ t , b 
∗, B , A , L̄ t , H , and B 

∗ are defined in Appendix

A.3 of Andrei (2013) . 

D2. Proof of Theorem 5.1 

To prove Theorem 5.1 , we adapt the expression for the

price ˜ P in Brennan and Cao (1997) and write 

˜ P t = βt ̃
 U + αt ̃

 V + 

t−1 ∑ 

j=0 

ξ j,t ̃
 Q j − γt ̃

 X t . (253)

The price is informationally equivalent to 

˜ Q t = 

1 

βt 

( ˜ P t −
t−1 ∑ 

j=0 

ξ j,t ̃
 Q j 

) 

= ̃

 U + 

αt 

βt ̃

 V − γt 

βt ̃

 X t . (254)

Furthermore, we can write agent i ’s individual demand

as 

˜ D 

i 
t = ω 

i 
t ̃

 P t + 

t ∑ 

k =0 

λi 
k ̃

 Q k + 

t ∑ 

k =0 

θ i 
k ̃

 Z i k . (255)
By the law of large numbers, we have that 
∫ 1 

0 
˜ Z i 

k 
= ̃

 U + ̃

 V .

As a result, when we aggregate individual demands, we

obtain ∫ 1 

0 

˜ D 

i 
t = ω̄ t ̃

 P t + 

t ∑ 

k =0 

λ̄k ̃
 Q k + 

t ∑ 

k =0 

θ̄k ̃
 U + 

t ∑ 

k =0 

θ̄k ̃
 V , (256)

where ω̄ t = 

∑ 

k ∈ N πt (k ) ω 

i 
t (k ) , λ̄t = 

∑ 

k ∈ N πt (k ) λi 
t (k ) , and

θ̄t = 

∑ 

k ∈ N πt (k ) θ i 
t (k ) are average demand coefficients

across the population of agents. Each average involves the

distribution of types. 

Imposing market clearing, we have 

t ∑ 

k =0 ̃

 X k −
t ∑ 

k =0 

θ̄k ̃
 U −

t ∑ 

k =0 

θ̄k ̃
 V = ω̄ t ̃

 P t + 

t ∑ 

k =0 

λ̄k ̃
 Q k . (257)

Substituting 

˜ P t = βt ̃
 Q t + 

t−1 ∑ 

j=0 

ξ j,t ̃
 Q j (258)

into the above equation, we obtain 

t ∑ 

k =0 ̃

 X k −
t ∑ 

k =0 

θ̄k ̃
 U −

t ∑ 

k =0 

θ̄k ̃
 V 

= ω̄ t (βt ̃
 Q t + 

t−1 ∑ 

j=0 

ξ j,t ̃
 Q j ) + 

t ∑ 

k =0 

λ̄k ̃
 Q k . (259)

Furthermore, notice that 

˜ X k = 

βk 

γk 

(˜ U + 

αk 

βk ̃

 V − ˜ Q k 

)
. (260)

Substituting and regrouping, we obtain 

˜ X t + 

t−1 ∑ 

k =0 

βk 

γk 

(˜ U + 

αk 

βk ̃

 V − ˜ Q k 

)
−

t ∑ 

k =0 

θ̄k ̃
 U −

t ∑ 

k =0 

θ̄k ̃
 V 

= ( ̄ω t βt + ̄λt ) ̃  Q t + 

t−1 ∑ 

j=0 

(ξ j,t ω̄ t + ̄λ j ) ̃  Q j , (261)

or, equivalently, 

˜ X t + 

( 

t−1 ∑ 

k =0 

βk 

γk 

−
t ∑ 

k =0 

θ̄k 

) ˜ U + 

( 

t−1 ∑ 

k =0 

βk 

γk 

αk 

βk 

−
t ∑ 

k =0 

θ̄k 

) ˜ V 

−
t−1 ∑ 

k =0 

βk 

γk 

˜ Q k = ( ̄ω t βt + ̄λt ) 
(˜ U + 

αt 

βt ̃

 V − γt 

βt ̃

 X t 

)
+ 

t−1 ∑ 

j=0 

(ξ j,t ω̄ t + ̄λ j ) ̃  Q j . (262)

By separation of variables, we get 

−βt 

γt 
= ω̄ t βt + ̄λt (263)

t−1 ∑ 

k =0 

βk 

γk 

−
t ∑ 

k =0 

θ̄k = ω̄ t βt + ̄λt (264)

t−1 ∑ 

k =0 

βk 

γk 

αk 

βk 

−
t ∑ 

k =0 

θ̄k = 

αt 

βt 

(
ω̄ t βt + ̄λt 

)
(265)
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−βk 

γk 

= ξk,t ω̄ t + ̄λk , for k = 0 , 1 , . . . , t − 1 . (266) 

Without loss of generality, we set 

γt 

βt 
= 

1 

rS�′ 
t 

(267) 

so that 

t ∑ 

k =0 

θ̄k = 

t ∑ 

k =0 

βk 

γk 

= rS 

t ∑ 

k =0 

�k , (268) 

and 

αt 

βt 
= 

�t 

rS�t 
(269) 

so that: 

t ∑ 

k =0 

θ̄k = 

t ∑ 

k =0 

βk 

γk 

αk 

βk 

= 

t ∑ 

k =0 

�k . (270) 

The system of equations in (49) follows. This system of 

equations is a fixed point: to solve it, we solve the problem 

recursively (as in Appendix A.2 , except accounting for the 

rumor) over four periods. We then start with guess values 

for { � j } 3 j=0 
and { � j } 3 j=0 

and get, through the fixed point 

in (49) , new values for these coefficients. Iterating and in- 

voking the Contraction-Mapping Theorem, we obtain the 

equilibrium coefficients. 
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